Desbalance del sistema antioxidante causado por la exposición a nanopartículas de óxido de zinc y óxido de cobre

Conteúdo do artigo principal

Jesus Alberto Geraldo León
https://orcid.org/0000-0002-2029-7740
Rafael Vázquez-Duhalt
https://orcid.org/0000-0003-1612-2996
Karla Oyuky Juárez Moreno
https://orcid.org/0000-0002-6171-8601

Resumo

Los nanomateriales (NM) sintetizados a partir de óxidos metálicos, como las nanopartículas de óxido de zinc (NPsZnO), son uno de los más utilizados en la industria alimentaria como recubrimientos para envases de alimentos y excipientes, y dentro de la industria cosmética en la fabricación de cremas, protectores solares, maquillajes y otros productos de belleza. Al incrementar su uso, también aumentan los escenarios de exposición y potencial efecto a la salud. El interés por estudiar sus posibles efectos tóxicos y el impacto en el ambiente se ha incrementado por consecuencia. La via de exposición y las propiedades fisicoquímicas del NM define sus interacciones moleculares y toxicidad. Los NM que ingresan a la célula interactuan con diferentes organelos, induciendo estrés oxidativo e incrementando la producción de especies de oxígeno altamente reactivas (ROS), siendo este uno de los mecanismos de nanotoxicidad mas frecuentes. Independientemente de la existencia de muchos estudios sobre la generación de ROS por las NPs, poca atención se ha dedicado a conocer si las NPs son capaces de alterar el sistema antioxidante de la célula. En este trabajo mostramos algunos ejemplos de cómo las NPsZnO y CuO, alteran las funciones antioxidantes de los hepatocitos para brindar elementos que ayuden a explicar los mecanismos moleculares de la toxicidad celular inducida por NPs.

Detalhes do artigo

Como Citar
Geraldo León, J. A., Vázquez-Duhalt, R., & Juárez Moreno, K. O. (2022). Desbalance del sistema antioxidante causado por la exposición a nanopartículas de óxido de zinc y óxido de cobre. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 15(29), 1e-13e. https://doi.org/10.22201/ceiich.24485691e.2022.29.69701
Seção
Seção especial

Referências

Ahamed, Maqusood, Maqsood A. Siddiqui, Mohd J. Akhtar, Iqbal Ahmad, Aditya B. Pant y Hisham A. Alhadlaq. 2010. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communications, 396(2): 578-83. https://doi.org/10.1016/j.bbrc.2010.04.156

Akhtar, Mohd Javed, Maqusood Ahamed, Sudhir Kumar, M. A. Majeed Khan, Javed Ahmad y Salman A. Alrokayan. 2012. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine, 7: 845-57. https://doi.org/10.2147/IJN.S29129

Alarifi, Saud, Daoud Ali, Ankit Verma, Saad Alakhtani y Bahy A Ali. 2013. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. International Journal of Toxicology, 32(4): 296-307. https://doi.org/10.1177/1091581813487563

Anreddy, Rama Narsimha Reddy. 2018. Copper oxide nanoparticles induces oxidative stress and liver toxicity in rats following oral exposure. Toxicology Reports, 5: 903-904. https://doi.org/10.1016/j.toxrep.2018.08.022

Battez, A., Hernández, J. L .Viesca, R. González, D. Blanco, E. Asedegbega, A. Osorio, 2010. Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi Coating. Wear, 268(1-2): 325-28. https://doi.org/10.1016/j.wear.2009.08.018

Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., Bruinink, A. y Stark, W. J. 2006. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environmental Science & Technology, 40(14): 4374-4381. https://doi.org/10.1021/es052069i

Canli, Esin G., Hasan B. Ila y Mustafa Canli. 2019. Response of the antioxidant enzymes of rats following oral administration of metal-oxide nanoparticles (Al 2 O 3 , CuO, TiO 2 ). Environmental Science and Pollution Research, 26(1): 938-45. https://doi.org/10.1007/s11356-018-3592-8

Chibber, Sandesh, Shakeel Ahmed Ansari y Rukhsana Satar. 2013. New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects. Journal of Nanoparticle Research, 15(4). https://doi.org/10.1007/s11051-013-1492-x

El-Trass, A., H ElShamy, I. El-Mehasseb y M. El-Kemary. 2012. CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Applied Surface Science 258(7): 2997-3001. https://doi.org/10.1016/j.apsusc.2011.11.025

Fahmy, Baher y Stephania A. Cormier. 2009. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology in Vitro 23(7): 1365-71. https://doi.org/10.1016/j.tiv.2009.08.005

Fahmy, Heba Mohamed, Nashwa Moatez Ebrahim y Mohamed Hassaneen Gaber. 2020. In-vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines. Journal of Trace Elements in Medicine and Biology, 60 (febr.): 126481. https://doi.org/10.1016/j.jtemb.2020.126481

Gunawan, Cindy, Wey Yang Teoh, Christopher P. Marquis y Rose Amal. 2011. Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano, 5(9): 7214-25. https://doi.org/10.1021/nn2020248

Ivask, Angela, O. Bondarenko, N. Jepihhina y A. Kahru. 2010. Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO 2, silver and fullerene nanoparticles using a set of recombinant luminescent escherichia coli strains: differentiating the impact of particles and solubilised metals. Analytical and Bioanalytical Chemistry, 398(2): 701-16. https://doi.org/10.1007/s00216-010-3962-7

Jeng, H. A. y Swanson, J. 2006. Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health Part A, 41(12): 2699-2711.https://doi.org/10.1080/10934520600966177

Karlsson, Hanna L., Pontus Cronholm, Johanna Gustafsson y Lennart Moller. 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21(9): 1726-32. https://doi.org/10.1021/tx800064j

Khan, S. A. et al. 2017. Biogenic synthesis of CuO nanoparticles and their biomedical applications: a current review. Int J Adv Res, 5(6): 925-46. http://dx.doi.org/10.21474/IJAR01/4495

Lee, Seung Ho, Jae Eun Pie, Yu Ri Kim, Hee Ra Lee, Sang Wook Son y Meyoung Kon Kim. 2012. Effects of zinc oxide nanoparticles on gene expression profile in human keratinocytes. Molecular and Cellular Toxicology, 8(2): 113-18. https://doi.org/10.1007/s13273-012-0014-8

Ma, Hongbo, Phillip L. Williams y Stephen A. Diamond. 2013. Ecotoxicity of manufactured ZnO nanoparticles - A review. Environmental Pollution. Environ Pollut. https://doi.org/10.1016/j.envpol.2012.08.011

Mirzaei, Hamed y Majid Darroudi. 2017. Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceramics International, 43(1): 907-14. https://doi.org/10.1016/j.ceramint.2016.10.051

Muthuraman, Pandurangan, Kothandam Ramkumar y Doo Hwan Kim. 2014. Analysis of dose-dependent effect of zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme activity in adipocytes. Applied Biochemistry and Biotechnology, 174(8): 2851-63. https://doi.org/10.1007/s12010-014-1231-5

Osman, I. F., Baumgartner, A., Cemeli, E., Fletcher, J. N. y Anderson, D. (2010). Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells. Nanomedicine, 5(8): 1193-1203. https://doi.org/10.2217/nnm.10.52

Park, Seoyoung, Yong Kwon Lee, Moonju Jung, Ki Heon Kim, Namhyun Chung, Eun Kyung Ahn, Young Lim y Kweon Haeng Lee. 2007. Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhalation Toxicology, 19: 59-65. Inhal Toxicol. https://doi.org/10.1080/08958370701493282

Pujalté, Igor, Isabelle Passagne, Brigitte Brouillaud, Mona Tréguer, Etienne Durand, Céline Ohayon-Courtès y Béatrice l’Azou. 2011. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Particle and Fibre Toxicology, 8(1): 10. https://doi.org/10.1186/1743-8977-8-10

Pulskamp, Karin, Jörg M. Wörle-Knirsch, Frank Hennrich, Katrin Kern y Harald F. Krug. 2007. Human lung epithelial cells show biphasic oxidative burst after single-walled carbon nanotube contact. Carbon, 45(11): 2241-49. https://doi.org/10.1016/j.carbon.2007.06.054

Ramírez Agudelo, María Elena y Mauricio Rojas López. 2010. La necrosis, un mecanismo regulado de muerte celular. Iatreia, 23(2): 166-77. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-07932010000200008&lng=en&tlng=es

Sharifi, Shahriar et al. 2012. Toxicity of nanomaterials. Chemical Society Reviews, 41(6): 2323-43. https://doi.org/10.1039/C1CS15188F

Sharma, Vyom, Ritesh K. Shukla, Neha Saxena, Devendra Parmar, Mukul Das y Alok Dhawan. 2009. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicology Letters, 185(3): 211-18. https://doi.org/10.1016/j.toxlet.2009.01.008

Shrivastava, Rupal, Saimah Raza, Abhishek Yadav, Pramod Kushwaha y Swaran J. S. Flora. 2014. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug and Chemical Toxicology, 37(3): 336-47. https://doi.org/10.3109/01480545.2013.866134

Sun, Tingting, Yiwu Yan, Yan Zhao, Feng Guo y Chengyu Jiang. 2012. Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS One, 7(8). https://doi.org/10.1371/journal.pone.0043442

Syama, S., S. C. Reshma, P. J. Sreekanth, H. K. Varma y P. V. Mohanan. 2013. Effect of zinc oxide nanoparticles on cellular oxidative stress and antioxidant defense mechanisms in mouse liver. Toxicological and Environmental Chemistry, 95(3): 495-503. https://doi.org/10.1080/02772248.2013.789606

Tan, Bee Ling, Mohd Esa Norhaizan, Winnie-Pui-Pui Liew y Heshu Sulaiman Rahman. 2018. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Frontiers in pharmacology, 9: 1162. https://doi.org/10.3389/fphar.2018.01162

Valko, M., H. Morris y M. Cronin. 2005. Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10): 1161-1208. https://doi.org/10.2174/0929867053764635

Vayssieres, L., K. Keis, A. Hagfeldt y S. E. Lindquist. 2001. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chemistry of Materials, 13(12): 4395-98. https://doi.org/10.1021/cm011160s

Zhang, Zheng Zhe, Jia Jia Xu, Zhi Jian Shi, Ya Fei Cheng, Zheng Quan Ji, Rui Deng y Ren Cun Jin. 2017. Short-term impacts of Cu, CuO, ZnO and Ag nanoparticles (NPs) on anammox sludge CuNPs make a difference. Bioresource Technology, 235: 281-91. https://doi.org/10.1016/j.biortech.2017.03.135