Desbalance del sistema antioxidante causado por la exposición a nanopartículas de óxido de zinc y óxido de cobre
Main Article Content
Abstract
Nanomaterials (NM) synthesized from metal oxides, such as zinc oxide nanoparticles (ZnO NPs), are one of the most widely used in the food industry in coatings for food packaging and excipients and in the cosmetics industry for the manufacture of creams, sunscreens, makeup, and other beauty products. As their use increases, so do the exposure scenarios, thus the interest in studying their possible toxic effects on health and the environment. The route of exposure and the physicochemical properties of NMs define their molecular interactions and toxicity. NMs entering the cell interact with different organelles, inducing oxidative stress and increasing the production of highly reactive oxygen species (ROS), one of the most common mechanisms of nanotoxicity. Furthermore, although there are many studies on the generation of ROS by NPs, little attention has been devoted to whether NPs can alter the antioxidant system of the cell. In this work, we show some examples of how ZnO and CuO NPs alter the antioxidant functions of hepatocytes to provide elements to help explain the molecular mechanisms of NPs-induced cellular toxicity.
Article Details
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
References
Ahamed, Maqusood, Maqsood A. Siddiqui, Mohd J. Akhtar, Iqbal Ahmad, Aditya B. Pant y Hisham A. Alhadlaq. 2010. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communications, 396(2): 578-83. https://doi.org/10.1016/j.bbrc.2010.04.156
Akhtar, Mohd Javed, Maqusood Ahamed, Sudhir Kumar, M. A. Majeed Khan, Javed Ahmad y Salman A. Alrokayan. 2012. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine, 7: 845-57. https://doi.org/10.2147/IJN.S29129
Alarifi, Saud, Daoud Ali, Ankit Verma, Saad Alakhtani y Bahy A Ali. 2013. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. International Journal of Toxicology, 32(4): 296-307. https://doi.org/10.1177/1091581813487563
Anreddy, Rama Narsimha Reddy. 2018. Copper oxide nanoparticles induces oxidative stress and liver toxicity in rats following oral exposure. Toxicology Reports, 5: 903-904. https://doi.org/10.1016/j.toxrep.2018.08.022
Battez, A., Hernández, J. L .Viesca, R. González, D. Blanco, E. Asedegbega, A. Osorio, 2010. Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi Coating. Wear, 268(1-2): 325-28. https://doi.org/10.1016/j.wear.2009.08.018
Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., Bruinink, A. y Stark, W. J. 2006. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environmental Science & Technology, 40(14): 4374-4381. https://doi.org/10.1021/es052069i
Canli, Esin G., Hasan B. Ila y Mustafa Canli. 2019. Response of the antioxidant enzymes of rats following oral administration of metal-oxide nanoparticles (Al 2 O 3 , CuO, TiO 2 ). Environmental Science and Pollution Research, 26(1): 938-45. https://doi.org/10.1007/s11356-018-3592-8
Chibber, Sandesh, Shakeel Ahmed Ansari y Rukhsana Satar. 2013. New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects. Journal of Nanoparticle Research, 15(4). https://doi.org/10.1007/s11051-013-1492-x
El-Trass, A., H ElShamy, I. El-Mehasseb y M. El-Kemary. 2012. CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Applied Surface Science 258(7): 2997-3001. https://doi.org/10.1016/j.apsusc.2011.11.025
Fahmy, Baher y Stephania A. Cormier. 2009. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology in Vitro 23(7): 1365-71. https://doi.org/10.1016/j.tiv.2009.08.005
Fahmy, Heba Mohamed, Nashwa Moatez Ebrahim y Mohamed Hassaneen Gaber. 2020. In-vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines. Journal of Trace Elements in Medicine and Biology, 60 (febr.): 126481. https://doi.org/10.1016/j.jtemb.2020.126481
Gunawan, Cindy, Wey Yang Teoh, Christopher P. Marquis y Rose Amal. 2011. Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano, 5(9): 7214-25. https://doi.org/10.1021/nn2020248
Ivask, Angela, O. Bondarenko, N. Jepihhina y A. Kahru. 2010. Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO 2, silver and fullerene nanoparticles using a set of recombinant luminescent escherichia coli strains: differentiating the impact of particles and solubilised metals. Analytical and Bioanalytical Chemistry, 398(2): 701-16. https://doi.org/10.1007/s00216-010-3962-7
Jeng, H. A. y Swanson, J. 2006. Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health Part A, 41(12): 2699-2711.https://doi.org/10.1080/10934520600966177
Karlsson, Hanna L., Pontus Cronholm, Johanna Gustafsson y Lennart Moller. 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21(9): 1726-32. https://doi.org/10.1021/tx800064j
Khan, S. A. et al. 2017. Biogenic synthesis of CuO nanoparticles and their biomedical applications: a current review. Int J Adv Res, 5(6): 925-46. http://dx.doi.org/10.21474/IJAR01/4495
Lee, Seung Ho, Jae Eun Pie, Yu Ri Kim, Hee Ra Lee, Sang Wook Son y Meyoung Kon Kim. 2012. Effects of zinc oxide nanoparticles on gene expression profile in human keratinocytes. Molecular and Cellular Toxicology, 8(2): 113-18. https://doi.org/10.1007/s13273-012-0014-8
Ma, Hongbo, Phillip L. Williams y Stephen A. Diamond. 2013. Ecotoxicity of manufactured ZnO nanoparticles - A review. Environmental Pollution. Environ Pollut. https://doi.org/10.1016/j.envpol.2012.08.011
Mirzaei, Hamed y Majid Darroudi. 2017. Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceramics International, 43(1): 907-14. https://doi.org/10.1016/j.ceramint.2016.10.051
Muthuraman, Pandurangan, Kothandam Ramkumar y Doo Hwan Kim. 2014. Analysis of dose-dependent effect of zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme activity in adipocytes. Applied Biochemistry and Biotechnology, 174(8): 2851-63. https://doi.org/10.1007/s12010-014-1231-5
Osman, I. F., Baumgartner, A., Cemeli, E., Fletcher, J. N. y Anderson, D. (2010). Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells. Nanomedicine, 5(8): 1193-1203. https://doi.org/10.2217/nnm.10.52
Park, Seoyoung, Yong Kwon Lee, Moonju Jung, Ki Heon Kim, Namhyun Chung, Eun Kyung Ahn, Young Lim y Kweon Haeng Lee. 2007. Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhalation Toxicology, 19: 59-65. Inhal Toxicol. https://doi.org/10.1080/08958370701493282
Pujalté, Igor, Isabelle Passagne, Brigitte Brouillaud, Mona Tréguer, Etienne Durand, Céline Ohayon-Courtès y Béatrice l’Azou. 2011. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Particle and Fibre Toxicology, 8(1): 10. https://doi.org/10.1186/1743-8977-8-10
Pulskamp, Karin, Jörg M. Wörle-Knirsch, Frank Hennrich, Katrin Kern y Harald F. Krug. 2007. Human lung epithelial cells show biphasic oxidative burst after single-walled carbon nanotube contact. Carbon, 45(11): 2241-49. https://doi.org/10.1016/j.carbon.2007.06.054
Ramírez Agudelo, María Elena y Mauricio Rojas López. 2010. La necrosis, un mecanismo regulado de muerte celular. Iatreia, 23(2): 166-77. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-07932010000200008&lng=en&tlng=es
Sharifi, Shahriar et al. 2012. Toxicity of nanomaterials. Chemical Society Reviews, 41(6): 2323-43. https://doi.org/10.1039/C1CS15188F
Sharma, Vyom, Ritesh K. Shukla, Neha Saxena, Devendra Parmar, Mukul Das y Alok Dhawan. 2009. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicology Letters, 185(3): 211-18. https://doi.org/10.1016/j.toxlet.2009.01.008
Shrivastava, Rupal, Saimah Raza, Abhishek Yadav, Pramod Kushwaha y Swaran J. S. Flora. 2014. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug and Chemical Toxicology, 37(3): 336-47. https://doi.org/10.3109/01480545.2013.866134
Sun, Tingting, Yiwu Yan, Yan Zhao, Feng Guo y Chengyu Jiang. 2012. Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS One, 7(8). https://doi.org/10.1371/journal.pone.0043442
Syama, S., S. C. Reshma, P. J. Sreekanth, H. K. Varma y P. V. Mohanan. 2013. Effect of zinc oxide nanoparticles on cellular oxidative stress and antioxidant defense mechanisms in mouse liver. Toxicological and Environmental Chemistry, 95(3): 495-503. https://doi.org/10.1080/02772248.2013.789606
Tan, Bee Ling, Mohd Esa Norhaizan, Winnie-Pui-Pui Liew y Heshu Sulaiman Rahman. 2018. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Frontiers in pharmacology, 9: 1162. https://doi.org/10.3389/fphar.2018.01162
Valko, M., H. Morris y M. Cronin. 2005. Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10): 1161-1208. https://doi.org/10.2174/0929867053764635
Vayssieres, L., K. Keis, A. Hagfeldt y S. E. Lindquist. 2001. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chemistry of Materials, 13(12): 4395-98. https://doi.org/10.1021/cm011160s
Zhang, Zheng Zhe, Jia Jia Xu, Zhi Jian Shi, Ya Fei Cheng, Zheng Quan Ji, Rui Deng y Ren Cun Jin. 2017. Short-term impacts of Cu, CuO, ZnO and Ag nanoparticles (NPs) on anammox sludge CuNPs make a difference. Bioresource Technology, 235: 281-91. https://doi.org/10.1016/j.biortech.2017.03.135