Factores para considerar en el diseño y síntesis de nanopartículas poliméricas para la entrega dirigida de moléculas anticancerígenas Factors to consider in the design and synthesis of polymeric nanoparticles for targeted delivery of anticancer molecules
Contenido principal del artículo
Resumen
Para que una molécula anticancerígena pueda ingresar a una célula tumoral y cumplir su función de manera efectiva, es esencial que supere las barreras físicas y fisiológicas impuestas por el cuerpo humano. Estas barreras deben ser consideradas, y traducidas en características fisicoquímicas específicas que la molécula debe poseer para garantizar una entrega exitosa. Una de las estrategias para mejorar la entrega de fármacos es mediante el uso de nanomateriales, los cuales sirven como transportadores para la entrega dirigida de fármacos y moléculas bioactivas. En este trabajo se revisan aspectos biológicos de relevancia para el tema que nos ocupa y cómo sintonizar/modular las propiedades fisicoquímicas del material para superar dichas barreras, permitiendo determinar el tamaño de partícula, su naturaleza química y funcionalización para direccionar la entrega del fármaco de manera más específica a las células neoplásicas. Este trabajo se enfoca en la utilización de la polimerización en emulsión como método de síntesis de nano-acarreadores, haciendo énfasis en el control del promedio y distribución de tamaño de la partícula. En cuanto a la funcionalización química, se resalta el método de funcionalización física desarrollado en nuestro grupo, dando origen a una patente.
Descargas
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Alexandre, Nuno, Jorge Ribeiro, Andrea Gärtner, Tiago Pereira, Irina Amorim, João Fragoso, Ascensão Lopes et al. 2014. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting - In vitro and in vivo studies. Journal of Biomedical Materials Research - Part A, 102(12): 4262-75. https://doi.org/10.1002/jbm.a.35098.
Angelopoulou, Athina, Argiris Kolokithas-Ntoukas, Christos Fytas y Konstantinos Avgoustakis. 2019. Folic acid-functionalized, condensed magnetic nanoparticles for targeted delivery of doxorubicin to tumor cancer cells overexpressing the folate receptor. ACS Omega, 4(26): 22214-27. https://doi.org/10.1021/acsomega.9b03594.
Beach, Maximilian A., Umeka Nayanathara, Yanting Gao, Changhe Zhang, Yijun Xiong, Yufu Wang y Georgina K. Such. 2024. Polymeric nanoparticles for drug delivery. Chemical Reviews, 124(9): 5505-5616. https://doi.org/10.1021/acs.chemrev.3c00705.
Choi, Chung Hang J., Jonathan E. Zuckerman, Paul Webster y Mark E. Davis. 2011. Targeting kidney mesangium by nanoparticles of defined size. Proceedings of the National Academy of Sciences, 108(16): 6656-61. https://doi.org/10.1073/pnas.1103573108.
Coen, Emma M., Robert G. Gilbert, Bradley R. Morrison, Hartmann Leube y Sarah Peach. 1998. Modelling particle size distributions and secondary particle formation in emulsion polymerisation. Polymer, 39(26): 7099-7112. https://doi.org/10.1016/S0032-3861(98)00255-9.
Davis, Mark E. 2012. Fighting cancer with nanoparticle medicines. The nanoscale matters. MRS Bulletin, 37(9): 828-35. https://doi.org/10.1557/mrs.2012.202.
Dobrowolska, Marta E. y Ger J. M. Koper. 2014. Optimal ionic strength for nonionically initiated polymerization. Soft Matter, 10(8): 1151. https://doi.org/10.1039/c3sm51998h.
Dreher, Matthew R., Wenge Liu, Charles R. Michelich, Mark W. Dewhirst, Fan Yuan y Ashutosh Chilkoti. 2006. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. Journal of the National Cancer Institute, 98(5): 335-44. https://doi.org/10.1093/jnci/djj070.
Gao, Huajian, Wendong Shi y Lambert B. Freund. 2005. Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences, 102(27): 9469-74. https://doi.org/10.1073/pnas.0503879102.
Garay-Jiménez, Julio C., Danielle Gergeres, Ashley Young, Daniel V. Lim y Edward Turos. 2009. Physical properties and biological activity of poly(butyl acrylate-styrene) nanoparticle emulsions prepared with conventional and polymerizable surfactants. Nanomedicine: Nanotechnology, Biology and Medicine, 5(4): 443-51. https://doi.org/10.1016/j.nano.2009.01.015.
Gilbert, Robert G. 1995. Emulsion polymerization: a mechanistic approach. Londres: Academic Press.
Harkins, William D. 1947. A general theory of the mechanism of emulsion polymerization. Journal of the American Chemical Society, 69(6): 1428-44. https://doi.org/10.1021/ja01198a053.
He, Chunbai, Yiping Hu, Lichen Yin, Cui Tang y Chunhua Yin. 2010. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 31(13): 3657-66. https://doi.org/10.1016/j.biomaterials.2010.01.065.
Herrera Ordóñez, Jorge. 2023. Controversies on the mechanism and kinetics of emulsion polymerization: an updated critical review. Advances in Colloid and Interface Science, 320(octubre): 103005. https://doi.org/10.1016/J.CIS.2023.103005.
Herrera Ordóñez, Jorge, Enrique Saldívar-Guerra y Eduardo Vivaldo-Lima. 2013. Dispersed-phase polymerization processes. En Enrique Saldívar-Guerra y Eduardo Vivaldo-Lima (eds.), Handbook of polymer synthesis, characterization, and processing. Hoboken, N. J., USA: John Wiley & Sons, Inc., 295-315. https://doi.org/10.1002/9781118480793.ch14.
Herrera Ordóñez, Jorge, Roberto Olvera‐Guillén, Gabriela Rocha‐Botello, Karla Juárez-Moreno y Martha Cruz‐Soto. 2023. Proceso de obtención de nanopartículas de polímero para la liberación de fármacos mediada por receptor. Patente de México No. 402024. Universidad Nacional Autónoma de México. Instituto Mexicano de la Propiedad Industrial.
Kaneo, Yoshiharu, Shiori Hashihama, Atsufumi Kakinoki, Tetsuro Tanaka, Takayuki Nakano y Yuka Ikeda. 2005. Pharmacokinetics and biodisposition of poly(vinyl alcohol) in rats and mice. Drug Metabolism and Pharmacokinetics, 20(6): 435-42. https://doi.org/10.2133/DMPK.20.435.
Kelly, C. M., C. C. DeMerlis, D. R. Schoneker y J. F. Borzelleca. 2003. Subchronic toxicity study in rats and genotoxicity tests with polyvinyl alcohol. Food and Chemical Toxicology, 41(5): 719-27. https://doi.org/10.1016/S0278-6915(03)00003-6.
Kettler, Katja, Karin Veltman, Dik van de Meent, Annemarie van Wezel y A. Jan Hendriks. 2014. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions y cell type. Environmental Toxicology and Chemistry, 33(3): 481-92. https://doi.org/10.1002/etc.2470.
Ledermann, J. A., S. Canevari y T. Thigpen. 2015. Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Annals of Oncology, 26(10): 2034-43. https://doi.org/10.1093/annonc/mdv250.
Lesko, P. M. y P. R. Sperry. 1997. Acrylic and styrene-acrylic polymers. En Peter A. Lovell and Mohamed S. El-Aasser (eds.), Emulsion polymerization and emulsion polymers. Chichester, UK: John Wiley & Sons Ltd., 619-55.
Lovell, Peter A. y F. Joseph Schork. 2020. Fundamentals of emulsion polymerization. Biomacromolecules 619-55. 21(11): 4396-4441. https://doi.org/10.1021/acs.biomac.0c00769.
Lv, Shixian, Meilyn Sylvestre, Alexander N. Prossnitz, Lucy F. Yang y Suzie H. Pun. 2021. Design of polymeric carriers for intracellular peptide delivery in oncology applications. Chemical Reviews, 121(18): 11653-98. https://doi.org/10.1021/acs.chemrev.0c00963.
Mok, Zi Hong. 2024. The effect of particle size on drug bioavailability in various parts of the body. Pharmaceutical Science Advances, 2(noviembre): 100031. https://doi.org/10.1016/j.pscia.2023.100031.
Narmani, Asghar, Melina Rezvani, Bagher Farhood, Parvaneh Darkhor, Javad Mohammadnejad, Bahram Amini, Soheila Refahi y Nouraddin Abdi Goushbolagh. 2019. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Development Research, 80(4): 404-24. https://doi.org/10.1002/ddr.21545.
Nel, Andre E., Lutz Mädler, Darrell Velegol, Tian Xia, Eric M. V. Hoek, Ponisseril Somasundaran, Fred Klaessig, Vince Castranova y Mike Thompson. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8(7): 543-57. https://doi.org/10.1038/nmat2442.
Nguyen, Luan N. M., Zachary P. Lin, Shrey Sindhwani, Presley MacMillan, Stefan M. Mladjenovic, Benjamin Stordy, Wayne Ngo y Warren C. W. Chan. 2023. The exit of nanoparticles from solid tumours. Nature Materials, 22(10): 1261-72. https://doi.org/10.1038/s41563-023-01630-0.
Olvera-Guillén, Roberto, Karla Juárez-Moreno, Martha Cruz-Soto, Gabriela Rocha-Botello y Jorge Herrera Ordóñez. 2021. Supramolecular poly(vinyl alcohol)-folate structure as functional layer and colloidal stabilizer of poly(vinyl acetate) nanoparticles with potential use as nanocarrier for hydrophobic antitumor agents. Journal of Nanoparticle Research, 23(6): 132. https://doi.org/10.1007/s11051-021-05241-1.
Ottewill, Ronald H. 1997. Stabilization of polymer colloids dispersions. En Peter A. Lovell y Mohamed S. El-Aasser (eds.), Emulsion polymers and emulsion polymerization. Londres: John Wiley & Sons Ltd., 59-121. https://www.wiley.com/en-mx/Emulsion+Polymerization+and+Emulsion+Polymers-p-9780471967460.
Patel, Siddharth, Renee C. Ryals, Kyle K. Weller, Mark E. Pennesi y Gaurav Sahay. 2019. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. Journal of Controlled Release, 303(junio): 91-100. https://doi.org/10.1016/j.jconrel.2019.04.015.
Pichot, C., T. Delair y A. Elaïssari. 1995. Polymer colloids for biomedical and pharmaceutical applications. En Polymeric dispersions: principles and applications. Dordrecht: Springer Netherlands, 515-539. https://doi.org/10.1007/978-94-011-5512-0_33.
Pulingam, Thiruchelvi, Parisa Foroozandeh, Jo-Ann Chuah y Kumar Sudesh. 2022. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials, 12(3): 576. https://doi.org/10.3390/nano12030576.
Rejman, Joanna, Volker Oberle, Inge S. Zuhorn y Dick Hoekstra. 2004. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochemical Journal, 377(1): 159-69. https://doi.org/10.1042/bj20031253.
Rivera-Hernández, Gabriela, Marilena Antunes-Ricardo, Patricia Martínez-Morales y Mirna L. Sánchez. 2021. Polyvinyl alcohol based-drug delivery systems for cancer treatment. International Journal of Pharmaceutics, 600(mayo): 120478. https://doi.org/10.1016/j.ijpharm.2021.120478.
Rivera M., Sánchez Bartez F., Gracia Mora I. 2022. Evaluación de nanopartículas en un xenotransplante de adenocarcinoma mamario MCF-7 a ratón desnudo (nu/nu). Informe de resultados, UNIPREC, Facultad de Química, UNAM.
Sadato, A., W. Taki, Y. Ikada, I. Nakahara, K. Yamashita, K. Matsumoto, M. Tanaka et al. 1994. Experimental study and clinical use of poly(vinyl acetate) emulsion as liquid embolisation material. Neuroradiology, 36(8): 634-41. https://doi.org/10.1007/BF00600429.
Sakai, Kiyofumi, Masayuki Fukuba, Yutaka Hasui, Kunihiko Moriyoshi, Takashi Ohmoto, Tokio Fujita y Tatsuhiko Ohe. 1998. Purification and characterization of an esterase involved in poly(vinyl alcohol) degradation by Pseudomonas vesicularis PD. Bioscience, Biotechnology, and Biochemistry, 62(10): 2000-2007. https://doi.org/10.1271/bbb.62.2000.
Sindhwani, Shrey, Abdullah Muhammad Syed, Jessica Ngai, Benjamin R. Kingston, Laura Maiorino, Jeremy Rothschild, Presley MacMillan et al. 2020. The entry of nanoparticles into solid tumours. Nature Materials, (enero). https://doi.org/10.1038/s41563-019-0566-2.
Solaro, Roberto, Andrea Corti y Emo Chiellini. 2000. Biodegradation of poly(vinyl alcohol) with different molecular weights and degree of hydrolysis. Polymers for Advanced Technologies, 11(8-12): 873-78. https://doi.org/10.1002/1099-1581(200008/12)11:8/12<873::AID-PAT35>3.0.CO;2-V.
Vauthier, Christine y Gilles Ponchel (eds.). 2016. Polymer nanoparticles for nanomedicines. Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-41421-8.
Zhou, Jikou, Carola Leuschner, Challa Kumar, Josef F. Hormes y Winston O. Soboyejo. 2006. Sub-cellular accumulation of magnetic nanoparticles in breast tumors and metastases. Biomaterials, 27(9): 2001-8. https://doi.org/10.1016/j.biomaterials.2005.10.013.