Síntesis de nanopartículas de oro: evaluación de los métodos de Turkevich, síntesis verde y buffer de Good
Contenido principal del artículo
Resumen
Este trabajo tiene como objetivo evaluar las características destacadas de las nanopartículas de Au sintetizadas mediante metodologías de tipo bottom-up, específicamente el método de Turkevich, el método verde (quercetina) y el método con buffer de Good utilizando dos agentes reductores (MES y PIPES). El tamaño, la forma, la distribución, la carga y la composición de las nanopartículas se caracterizaron utilizando UV-Vis, FTIR, DLS, potencial Zeta, TEM y XRD. Las nanopartículas obtenidas por cada método mostraron diferencias significativas en cuanto a tamaño, forma y uniformidad. Las sintetizadas por el método de Turkevich presentaron un tamaño promedio de 28.7 nm, mayor potencial Zeta y mejor homogeneidad en cuanto a tamaño y forma esférica. El método verde produjo nanopartículas con alta polidispersidad pero mayor pureza. En el método con tampón de Good, PIPES y MES dieron lugar a tamaños de partículas más grandes (37 y 43 nm, respectivamente) y dejaron residuos del agente reductor. Estos resultados muestran que cada técnica ofrece nanopartículas con características únicas para aplicaciones potenciales.
Descargas
Detalles del artículo

Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Abraham, M. E. and Acree, W. E. (2014). On the solubility of quercetin. J. Mol. Liq., 197: 157-159. https://doi.org/10.1016/j.molliq.2014.05.006.
Ahmed, S. R., Oh, S., Baba, R., Zhou, H., Hwang, S., Lee, J. and Park, E. Y. (2016). Synthesis of gold nanoparticles with buffer-dependent variations of size and morphology in biological buffers. Nanoscale Res. Lett., 11: 65. https://doi.org/10.1186/s11671-016-1290-3.
Bhattacharjee, S. (2016). DLS and zeta potential – What they are and what they are not? J. Control. Release., 235: 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017.
Catauro, M., Papale, F., Bollino, F., Piccolella, S., Marciano, S., Nocera, P. and Pacifico, S. (2015). Silica/quercetin sol-gel hybrids as antioxidant dental implant materials. Sci. technol. adv. material Meth., 16: 035001. https://doi.org/10.1088/1468-6996/16/3/035001.
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A. and Mozafari, M. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10: 57. https://doi.org/10.3390/pharmaceutics10020057.
Devendiran, R. M., Chinnaiyan, S. K., Yadav, N. K., Ramanathan, G., Singaravelu, S., Perumal, P. T. and Sivagnanam, U. T. (2016). Facile synthesis and evaluation of quercetin reduced and dextran sulphate stabilized gold nanoparticles decorated with folic acid for active targeting against breast cancer. RSC Advances, 39: 1-14. https://doi.org/10.1039/C6RA01756H.
Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J. and El-Sayed, M. A. (2012). The golden age: gold nanoparticles for biomedi-cine. Chem. Soc. Rev., 41: 2740-2779. https://doi.org/10.1039/c1cs15237h.
Ghosh, S. K. and Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev., 107: 4797-4862. https://doi.org/10.1021/cr0680282.
Giri, A., Makhal, A., Ghosh, B., Raychaudhuri, A. K. and Pal, S. K. (2010). Functionalization of manganite nanoparticles and their interaction with biologically relevant small ligands: picosecond time-resolved FRET studies. Nanoescale, 2: 2704-2709. https://doi.org/10.1039/C0NR00490A.
Good, N. E., Douglas, W. G., Wilhelmina, W., Connolly, T. N., Izawa, S. and Singh, R. M. M. (1966). Hydrogen ion buffers for biological research. Biochemistry, 5: 467-477. https://doi.org/10.1021/bi00866a011.
Huang, X. and El-Sayed, M. A. (2010). Gold nanoparticles: optical properties and implementations in cancer diagnosis and photo-thermal therapy. J. Adv. Res., 1: 13-28. https://doi.org/10.1016/j.jare.2010.02.002.
Jain, P. K., Huang, X., El-Sayed, I. H. and El-Sayed, M. A. (2007). Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2: 107-118. https://doi.org/10.1007/s11468-007-9031-1.
Jain, P. K., Lee, K. S., El-Sayed, I. H. and El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B., 110: 7238-7248. https://doi.org/10.1021/jp057170o.
Jamkhande, P. G., Ghule, N. W., Bamer, A. H. and Kalaskar, M. G. (2019). Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 53: 101174. https://doi.org/10.1016/j.jddst.2019.101174.
Jana, N. R., Gearheart, L. and Murphy, C. J. (2001). Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater., 13: 1389-1393. https://doi.org/10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F.
Kettemann, F., Birnbaum, A., Witte, S., Wuithschick, M., Pinna, N., Kraehnert, R., Rademann, K. and Polte, J. (2016). Missing piece of the mechanism of the turkevich method: the critical role of citrate protonation. Chem. Mater., 28: 4072-4081. https://doi.org/10.1021/acs.chemmater.6b01796.
Khan, I., Saeed, K. and Khan, I. (2019). Nanoparticles: properties, applications and toxicities. Arab. J. Chem., 12: 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011.
Krajczewski, J., Kołataj, K. and Kudelski, A. (2017). Plasmonic nanoparticles in chemical analysis. RSC Adv., 7: 17559-17576. https://doi.org/10.1039/C7RA01034F.
Meyers, M. A., Mishra, A. and Benson, D. J. (2006). Mechanical properties of nanocrystalline materials. Prog. Mater. Sci., 51, 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003.
Millstone, J. E., Hurst, S. J., Metraux, G. S. and Mirkin, C. A. (2009). Colloidal gold and silver triangular nanoprisms. Small, 5: 646-664. https://doi.org/10.1002/smll.200801480.
Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12: 788-800. https://doi.org/10.1021/la9502711.
Murphy, C. J., Sau, T. K., Gole, A. M., Orendorff, C. J., Gao, J., Gou, L. and El-Sayed, M. A. (2005). Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B., 109: 13857-13870. https://doi.org/10.1021/jp0516846.
Nakatuka, Y., Yoshida, H., Fukui, K. and Matuzawa, M. (2015). The effect of particle size distribution on effective zeta-potential by use of the sedimentation method. Adv. Powder. Technol., 26: 650-656. https://doi.org/10.1016/j.apt.2015.01.017.
Narayanan, K. B. and Sakthivel, N. (2008). Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett., 62: 4588-4590. https://doi.org/10.1016/j.matlet.2008.08.044.
Niu, J., Zhu, T. and Liu, Z. (2007). One-step seed-mediated growth of 30-150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent. Nanotechnology, 18: 3256. https://doi.org/10.1088/0957-4484/18/32/325607.
Oliveira, A. E. F., Pereira, A. C., Resende, M. A. C. and Ferreira, L. F. (2023). Gold nanoparticles: a didactic step-by-step of the synthesis using the Turkevich method, mechanisms, and characterizations. Analytica, 4: 250-263. https://doi.org/10.3390/analytica4020020.
Pacioni, N. L., Borsarelli, C. D., Rey, V. and Veglia, A. V. (2015). Synthetic routes for the preparation of silver nanoparticles. In Alarcon, E., Griffith, M., Udekwu K. (eds.), Silver nanoparticle applications, engineering materials. Springer, Cham., 13-46. https://doi.org/10.1007/978-3-319-11262-6_2.
Patel, V. R. and Agrawal, Y. K. (2011). Nanosuspension: an approach to enhance solubility of drugs. J. Adv. Pharm. Technol. Res., 2: 81-87. https://doi.org/10.4103/2231-4040.82950.
Polte, J. (2015). Fundamental growth principles of colloidal metal nanoparticles – A new perspective. Cryst. Eng. Comm., 17: 6809-6830. https://doi.org/10.1039/C5CE01014D.
Rahme, K. and Holmes, J. D. (2015). Gold nanoparticles: aynthesis, characterization, and bioconjugation. In Dekker Encyclopedia of Nanoscience and Nanotechnology. 3: 1-11. CRC Press.
Scholl, J., Koh, A. and Dionne, J. (2012). Quantum plasmon resonances of individual metallic nanoparticles. Nature, 483: 421-427. https://doi.org/10.1038/nature10904.
Szunerits, S., Spadavecchia, J. and Boukherroub, R. (2014). Surface plasmon resonance: signal amplification using colloidal gold nano-particles for enhanced sensitivity. Rev. Anal. Chem. 33: 153-164. https://doi.org/10.1515/revac-2014-0011.
Turkevich, J., Stevenson, P. C. and Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11: 55-75. https://doi.org/10.1039/DF9511100055.
Vergara-Castañeda, H., Granados-Segura, L., Luna-Bárcenas, G., McClements, D. J., Herrera-Hernández, M. G., Arjona, N., Hernández-Martínez, A. R., Estevez, M. and Pool, H. (2019). Gold nanoparticles bioreduced by natural extracts of arantho (Kalanchoe daigremontiana) for biological purposes: physicochemical, antioxidant and antiproliferative evaluations. Mater. Res. Express, 6: 055010. https://doi.org/10.1088/2053-1591/ab0155.
Wang, N., Cheng, X., Li, N., Wang, H. and Chen, H. (2019). Nanocarriers and their loading strategies. Adv. Healthc. Mater, 8: 1801002. https://doi.org/10.1002/adhm.201801002.
Webster, F. X., Kiemle, D. J., Silverstein, R. M. and Bryce, D. L. (2014). Spectrometric identification of organic compounds. 8th ed. Wiley.
Zuki, N. M., Ismail, N. and Omar, F. M. (2019). Evaluation of zeta potential and particle size measurements of multiple coagulants in semiconductor wastewater. AIP Conference Proceedings, 2124: 020036. https://doi.org/10.1063/1.5117096.