Toxicidad y persistencia ambiental de los nanomateriales
Contenido principal del artículo
Resumen
Las aplicaciones de los nanomateriales están creciendo a un ritmo extraordinario en una amplia variedad de campos. Al tratarse de un ámbito tecnológico relativamente nuevo, el uso seguro y sostenible de los nanomateriales no ha avanzado al mismo ritmo que la rápida comercialización de productos basados en nanotecnología; por lo tanto, es necesario abordar la información relacionada con la toxicidad y persistencia en el medio ambiente para consolidar metodologías adecuadas tanto para la evaluación toxicológica como para la evaluación del ciclo de vida. Esta revisión tiene como objetivo proporcionar una comprensión adecuada de los nanomateriales novedosos en aplicaciones ambientales, su destino en el entorno y las transformaciones que sufren debido a factores externos. Finalmente, los autores abordan los esfuerzos realizados por organismos internacionales y regionales en materia de evaluación de riesgos y marcos toxicológicos, haciendo énfasis en los desafíos actuales.
Descargas
Detalles del artículo

Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Abbas, Qumber, Balal Yousaf, Amina, Muhammad Ubaid Ali, Mehr Ahmed Mujtaba Munir, Ali El-Naggar, Jörg Rinklebe and Mu Naushad. (2020). Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: a review. Environment International, 138(March): 105646. https://doi.org/10.1016/j.envint.2020.105646. DOI: https://doi.org/10.1016/j.envint.2020.105646
Abbas, Qumber, Balal Yousaf, Habib Ullah, Muhammad Ubaid Ali, Yong Sik Ok and Jörg Rinklebe. (2020). Environmental transformation and nano-toxicity of engineered nano-particles (ENPs) in aquatic and terrestrial organisms. Critical Reviews in Environmental Science and Technology, 50(23): 2523-81. https://doi.org/10.1080/10643389.2019.1705721. DOI: https://doi.org/10.1080/10643389.2019.1705721
Abdel Maksoud, M. I. A., Ahmed M. Elgarahy, Charlie Farrell, Ala’a H. Al-Muhtaseb, David W. Rooney and Ahmed I. Osman. (2020). Insight on water remediation application using magnetic nanomaterials and biosorbents. Coordination Chemistry Reviews, 403: 213096. https://doi.org/10.1016/j.ccr.2019.213096. DOI: https://doi.org/10.1016/j.ccr.2019.213096
ABNT (Associação Brasileira de Normas Técnicas). (2023). ABNT ISO/TR 13121: Nanomaterials – Guidance on RISK ASSESSMent. São Paulo: ABNT. https://www.abntcatalogo.com.br/.
Adeel, Muhammad, Noman Shakoor, Muhammad Shafiq, Anna Pavlicek, Florian Part, Christian Zafiu, Ali Raza et al. (2021). A critical review of the environmental impacts of manufactured nano-objects on earthworm species. Environmental Pollution, 290(August): 118041. https://doi.org/10.1016/j.envpol.2021.118041. DOI: https://doi.org/10.1016/j.envpol.2021.118041
Al-Khayri, Jameel M., Mohammad Israil Ansari and Akhilesh Kumar Singh. (2021). Nanobiotechnology: mitigation of abiotic stress in plants. https://doi.org/10.1007/d978-3-030-73606-4. DOI: https://doi.org/10.1007/978-3-030-73606-4
Anastasiadis, Spiros H., Kiriaki Chrissopoulou, Emmanuel Stratakis, Paraskevi Kavatzikidou, Georgia Kaklamani and Anthi Ranella. (2022). How the physicochemical properties of manufactured nanomaterials affect their performance in dispersion and their applications in biomedicine: a review. Nanomaterials, 12(3). https://doi.org/10.3390/nano12030552. DOI: https://doi.org/10.3390/nano12030552
Baccaro, Marta, Johannes H. J. van den Berg and Nico W. van den Brink. (2021). Are long-term exposure studies needed? Short-term toxicokinetic model predicts the uptake of metal nanoparticles in earthworms after nine months. Ecotoxicology and Environmental Safety, 220(May): 112371. https://doi.org/10.1016/j.ecoenv.2021.112371. DOI: https://doi.org/10.1016/j.ecoenv.2021.112371
Besha, Abreham Tesfaye, Yanju Liu, Cheng Fang, Dawit N. Bekele and Ravi Naidu. (2020). Assessing the interactions between micropollutants and nanoparticles in engineered and natural aquatic environments. Critical Reviews in Environmental Science and Technology, 50(2): 135-215. https://doi.org/10.1080/10643389.2019.1629799. DOI: https://doi.org/10.1080/10643389.2019.1629799
Bilardo, Roberta, Federico Traldi, Alena Vdovchenko and Marina Resmini. (2022). Influence of surface chemistry and morphology of nanoparticles on protein corona formation. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 14(4): 1-22. https://doi.org/10.1002/wnan.1788. DOI: https://doi.org/10.1002/wnan.1788
Blázquez Sánchez, M., C. Fito-López and M. P. Cajaraville. (2021). A life cycle perspective of the exposure to airborne nanoparticles released from nanotechnology enabled products and applications. In Health and Environmental Safety of Nanomaterials, 173-94. Elsevier. https://doi.org/10.1016/B978-0-12-820505-1.00004-3. DOI: https://doi.org/10.1016/B978-0-12-820505-1.00004-3
Bodzek, Michał. (2023). Remediation of nano- and microplastics in water environment using nanomaterials. Desalination and Water Treatment, 316(June): 557-73. https://doi.org/10.5004/dwt.2023.30172. DOI: https://doi.org/10.5004/dwt.2023.30172
Chambers, Bryant A., A. R. M. Nabiul Afrooz, Sungwoo Bae, Nirupam Aich, Lynn E. Katz, Navid Bin Saleh and Mary Jo Kirisits. (2013). Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ. Sci. Technol., Just Accepted Manuscript • Publication Date. http://pubs.acs.org. DOI: https://doi.org/10.1021/es403969x
Chávez-Hernández, Jorge Antonio, Aída Jimena Velarde-Salcedo, Gabriela Navarro-Tovar and Carmen González. (2024). Safe nanomaterials: from their use, application, and disposal to regulations. Nanoscale Advances, 6(6): 1583-1610. https://doi.org/10.1039/D3NA01097J. DOI: https://doi.org/10.1039/D3NA01097J
Chen, Ming, Xiaosheng Qin and Guangming Zeng. (2017). Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends in Biotechnology. Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2016.12.001. DOI: https://doi.org/10.1016/j.tibtech.2016.12.001
Dai, Hongliang, Ting Han, Junting Cui, Xiang Li, Haq Nawaz Abbasi, Xingang Wang, Zechong Guo and Yong Chen. (2022). Stability, aggregation, and sedimentation behaviors of typical nano metal oxide particles in aqueous environment. Journal of Environmental Management, 316(April): 115217. https://doi.org/10.1016/j.jenvman.2022.115217. DOI: https://doi.org/10.1016/j.jenvman.2022.115217
Deng, J., Wang, J., Shi, J., Li, H., Lu, M., Fan, Z., Gu, Z. and Cheng, H. (2022). Tailoring the physicochemical properties of nanomaterials for immunomodulation. Advanced Drug Delivery Reviews, 180, 114039. https://doi.org/10.1016/j.addr.2021.114039. DOI: https://doi.org/10.1016/j.addr.2021.114039
Ding, Yaobo, Thomas A. J. Kuhlbusch, Martie van Tongeren et al. (2017). Airborne engineered nanomaterials in the workplace — A review of release and worker exposure during nanomaterial production and handling processes. Journal of Hazardous Materials, 322(January): 17-28. https://doi.org/10.1016/j.jhazmat.2016.04.075. DOI: https://doi.org/10.1016/j.jhazmat.2016.04.075
Dodds, Walter K., James P. Guinnip, Anne E. Schechner, Peter J. Pfaff and B. Smith Emma. (2021). Fate and toxicity of engineered nanomaterials in the environment: a meta-analysis. Science of the Total Environment, 796:148843. https://doi.org/10.1016/j.scitotenv.2021.148843. DOI: https://doi.org/10.1016/j.scitotenv.2021.148843
DOF (Diario Oficial de la Federación, México). (2020). NMX-R-13121-SCFI-2019. Mexico City: Secretaría de Economía. https://www.dof.gob.mx/.
Donia, D. T. and Carbone, M. (2019). Fate of the nanoparticles in environmental cycles. International Journal of Environmental Science and Technology, 16(1): 583-600. Center for Environmental and Energy Research and Studies. https://doi.org/10.1007/s13762-018-1960-z. DOI: https://doi.org/10.1007/s13762-018-1960-z
El-Kady, Maha M., Iqbal Ansari, Charu Arora, Nidhi Rai, Sanju Soni, Dakeshwar Kumar Verma, Priyanka Singh and Alaa El Din Mahmoud. (2023). Nanomaterials: a comprehensive review of applications, toxicity, impact, and fate to environment. Journal of Molecular Liquids, 370: 121046. https://doi.org/10.1016/j.molliq.2022.121046. DOI: https://doi.org/10.1016/j.molliq.2022.121046
El-sayed, Mohamed E. A. (2020). Nanoadsorbents for water and wastewater remediation. Science of the Total Environment, 739: 139903. https://doi.org/10.1016/j.scitotenv.2020.139903. DOI: https://doi.org/10.1016/j.scitotenv.2020.139903
EMA (European Medicines Agency). (2025). Nanomedicines: regulatory and scientific guidelines. Amsterdam: EMA. https://www.ema.europa.eu/en/human-regulatory-overview/research-and-development/scientific-guidelines/multidisciplinary-guidelines/multidisciplinary-nanomedicines.
EPA (US Environmental Protection Agency). (2025). Control of nanoscale materials under the toxic substances control act. Washington, D. C.: EPA. https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/control-nanoscale-materials-under.
Faghih Akhlaghi, Masoud, Marjan Daeihamed and Seid Mahdi Jafari. (2021). Regulatory principles on food nano-particles legislated by North and South American countries. Safety and Regulatory Issues of Nanoencapsulated Food Ingredients, January, 239-50. https://doi.org/10.1016/B978-0-12-815725-1.00007-0. DOI: https://doi.org/10.1016/B978-0-12-815725-1.00007-0
Fazio, Enza, Salvatore Spadaro, Carmelo Corsaro, Giulia Neri, Salvatore Gianluca Leonardi, Fortunato Neri, Nehru Lavanya, Chinnathambi Sekar, Nicola Donato and Giovanni Neri. (2021). Metal-oxide based nanomaterials: synthesis, characterization and their applications in electrical and electrochemical sensors. Sensors, 21(7): 2494. https://doi.org/10.3390/s21072494. DOI: https://doi.org/10.3390/s21072494
FDA (US Food and Drug Administration). (2018). Nanotechnology guidance documents. Silver Spring, MD: FDA. https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-guidance-documents.
Foulkes, R., Man, E., Thind, J., Yeung, S., Joy, A. and Hoskins, C. (2020). The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomaterials Science, 8(17): 4653-4664. https://doi.org/10.1039/D0BM00558D. DOI: https://doi.org/10.1039/D0BM00558D
Freixa, Anna, Vicenç Acuña, Josep Sanchís, Marinella Farré, Damià Barceló and Sergi Sabater. (2018). Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Science of the Total Environment. Elsevier B. V. https://doi.org/10.1016/j.scitotenv.2017.11.095. DOI: https://doi.org/10.1016/j.scitotenv.2017.11.095
Furtado, L. M., Hoque, M. E., Mitrano, D. F., Ranville, J. F., Cheever, B., Frost, P. C., Xenopoulos, M. A., Hintelmann, H. and Metcalfe, C. D. (2014). The persistence and transformation of silver nanoparticles in littoral lake mesocosms monitored using various analytical techniques. Environmental Chemistry, 11(4), 419-430. https://doi.org/10.1071/EN14064. DOI: https://doi.org/10.1071/EN14064
Gambardella, Chiara and Annalisa Pinsino. (2022). Nanomaterial ecotoxicology in the terrestrial and aquatic environment: a systematic review. Toxics, 10(7). https://doi.org/10.3390/toxics10070393. DOI: https://doi.org/10.3390/toxics10070393
Garcidueñas-Piña, Cristina, Iliana E. Medina-Ramírez, Plinio Guzmán, Roberto Rico-Martínez, José Francisco Morales-Domínguez and Isidoro Rubio-Franchini. (2016). Evaluation of the antimicrobial activity of nanostructured materials of titanium dioxide doped with silver and/or copper and their effects Arabidopsis thaliana. International Journal of Photoenergy, 2016(May): e8060847. https://doi.org/10.1155/2016/8060847. DOI: https://doi.org/10.1155/2016/8060847
Garner, Kendra L., Sangwon Suh and Arturo A. Keller. (2017). Assessing the risk of engineered nanomaterials in the environment: development and application of the NanoFate model. Environmental Science & Technology, 51(10): 5541-51. https://doi.org/10.1021/acs.est.6b05279. DOI: https://doi.org/10.1021/acs.est.6b05279
Gomes, Susana I. L., Carlos P. Roca, Frank von der Kammer, Janeck J. Scott-Fordsmand and Mónica J. B. Amorim. (2018). Mechanisms of (photo)toxicity of TiO2 nanomaterials (NM103, NM104, NM105): using high-throughput gene expression in: Enchytraeus crypticus. Nanoscale, 10(46): 21960-70. https://doi.org/10.1039/c8nr03251c. DOI: https://doi.org/10.1039/C8NR03251C
Hansen, Steffen Foss, Keld Alstrup Jensen and Anders Baun. (2014). NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. Journal of Nanoparticle Research, 16(1): 2195. https://doi.org/10.1007/s11051-013-2195-z. DOI: https://doi.org/10.1007/s11051-013-2195-z
Harrison, Daniel Mark, Sophie M. Briffa, Antonino Mazzonello and Eugenia Valsami-Jones. (2023). A review of the aquatic environmental transformations of engineered nanomaterials. Nanomaterials, 13(14). https://doi.org/10.3390/nano13142098. DOI: https://doi.org/10.3390/nano13142098
Hartmann, Nanna B., Marlene Ågerstrand, Hans-Christian Holten Lützhøft and Anders Baun. (2017). NanoCRED: a transparent framework to assess the regulatory adequacy of ecotoxicity data for nanomaterials – Relevance and reliability revisited. NanoImpact, 6(April):81-89. https://doi.org/10.1016/j.impact.2017.03.004. DOI: https://doi.org/10.1016/j.impact.2017.03.004
Hou, W. C., Chowdhury, I., Goodwin, D. G., Henderson, W. M., Fairbrother, D. H., Bouchard, D. and Zepp, R. G. (2015). Photochemical transformation of graphene oxide in sunlight. Environmental Science and Technology, 49(6): 3435-3443. https://doi.org/10.1021/es5047155. DOI: https://doi.org/10.1021/es5047155
ICONTEC. (2018). NTC-ISO/TR 13121: nanomaterials – Guidance on risk assessment. Bogotá: Instituto Colombiano de Normas Técnicas y Certificación. https://tienda.icontec.org/.
IRAM (Instituto Argentino de Normalización y Certificación). (2019). IRAM 39503 and IRAM 39504: nanotechnology standards. Buenos Aires: IRAM. https://iram.org.ar/.
ISO. (2014). ISO/TR 16197: Nanotechnologies — Compilation and description of toxicological screening methods for manufactured nanomaterials. Ginebra, Suiza: International Organization for Standardization. https://www.iso.org/standard/54708.html.
ISO. (2024). ISO/TS 12901-1: Occupational risk management applied to engineered nanomaterials – Part 1: Principles and approaches. Geneva: International Organization for Standardization. https://www.iso.org/standard/88154.html.
Jayawardena, H. Surangi N., Sajani H. Liyanage, Kavini Rathnayake, Unnati Patel and Mingdi Yan. (2021). Analytical methods for characterization of nanomaterial surfaces. Analytical Chemistry, 93(4): 1889-1911. https://doi.org/10.1021/acs.analchem.0c05208. DOI: https://doi.org/10.1021/acs.analchem.0c05208
Jimenez-Relinque, Eva, Frédéric Dappozze, Gilles Berhault, Christophe Gilbert, Didier Leonard and Chantal Guillard. (2024). Bismuth oxyhalide as efficient photocatalyst for water, air treatment and bacteria inactivation under UV and visible light. Journal of Photochemistry and Photobiology A: Chemistry, 452(February). https://doi.org/10.1016/j.jphotochem.2024.115554. DOI: https://doi.org/10.1016/j.jphotochem.2024.115554
Johnston, Linda J., Norma González-Rojano, Kevin J. Wilkinson and Baoshan Xing. (2020). Key challenges for evaluation of the safety of engineered nanomaterials. NanoImpact, 18(April): 100219. https://doi.org/10.1016/j.impact.2020.100219. DOI: https://doi.org/10.1016/j.impact.2020.100219
Kansara, Krupa, Shiv Bolan, Deepika Radhakrishnan, Thava Palanisami, Ala’a H. Al-Muhtaseb, Nanthi Bolan, Ajayan Vinu, Ashutosh Kumar and Ajay Karakoti. (2022). A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Environmental Pollution, 296(September 2021): 118726. https://doi.org/10.1016/j.envpol.2021.118726. DOI: https://doi.org/10.1016/j.envpol.2021.118726
Keller, Arturo A., Suzanne McFerran, Anastasiya Lazareva and Sangwon Suh. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15(6): 1-17. https://doi.org/10.1007/S11051-013-1692-4/METRICS. DOI: https://doi.org/10.1007/s11051-013-1692-4
Khan, Mujeeb, Mohammed Rafi Shaik, Syed Farooq Adil, Shams Tabrez Khan, Abdulrahman Al-Warthan, Mohammed Rafiq H. Siddiqui, Muhammad N. Tahir and Wolfgang Tremel. (2018). Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis. Dalton Transactions, 47(35): 11988-10. https://doi.org/10.1039/C8DT01152D. DOI: https://doi.org/10.1039/C8DT01152D
Koul, Bhupendra, Anil Kumar Poonia, Dhananjay Yadav and Jun O. Jin. (2021). Microbe-mediated biosynthesis of nanoparticles: applications and future prospects. Biomolecules, 11(6). https://doi.org/10.3390/biom11060886. DOI: https://doi.org/10.3390/biom11060886
Kumar, Ajay, Dipali Nayak, Pooja Sahoo, Barun Kumar Nandi and R. Thangavel. (2024). Synthesis of type-II TiO2 nanoparticle/ZnO nanorods heterostructure for enhanced photocatalytic activity. Materials Letters, 367(April): 136672. https://doi.org/10.1016/j.matlet.2024.136672. DOI: https://doi.org/10.1016/j.matlet.2024.136672
Lai, R. W. S., Yeung, K. W. Y., Yung, M. M. N., Djurišić, A. B., Giesy, J. P. and Leung, K. M. Y. (2018). Regulation of engineered nanomaterials: current challenges, insights and future directions. Environmental Science and Pollution Research International, 25(4), 3060-3077. https://doi.org/10.1007/s11356-017-9489-0. DOI: https://doi.org/10.1007/s11356-017-9489-0
Laux, Peter, Jutta Tentschert, Christian Riebeling et al. (2017). Nanomaterials: certain aspects of application, risk assessment and risk communication. Archives of Toxicology, 2017 92:1 92(1): 121-41.https://doi.org/10.1007/s00204-017-2144-1. DOI: https://doi.org/10.1007/s00204-017-2144-1
Li, Ting, Chao Zhi Zhang, Xinxia Fan, Ying Li and Mingxia Song. (2017). Degradation of oxidized multi-walled carbon nanotubes in water via photo-fenton method and its degradation mechanism. Chemical Engineering Journal, 323: 37-46. https://doi.org/10.1016/j.cej.2017.04.081. DOI: https://doi.org/10.1016/j.cej.2017.04.081
Li, Xiuying, Zheng Yong Zhang and Fengyu Li. (2025). Flexible electrochemical sensors based on nanomaterials: constructions, applications and prospects. Chemical Engineering Journal, 504(October 2024): 158101. https://doi.org/10.1016/j.cej.2024.158101. DOI: https://doi.org/10.1016/j.cej.2024.158101
Li, Zhixiong, Sheyda Shakiba, Ning Deng, Jiawei Chen, Stacey M. Louie and Yandi Hu. (2020). Natural organic matter (NOM) imparts molecular-weight-dependent steric stabilization or electrostatic destabilization to ferrihydrite nanoparticles. Environmental Science and Technology, 54(11): 6761-70. https://doi.org/10.1021/acs.est.0c01189. DOI: https://doi.org/10.1021/acs.est.0c01189
Liu, Yun, Yaguang Nie, Jingjing Wang, Juan Wang, Xue Wang, Shaopeng Chen, Guoping Zhao, Lijun Wu and An Xu. (2018). Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants. Ecotoxicology and Environmental Safety, 162(October): 92-102. https://doi.org/10.1016/j.ecoenv.2018.06.079. DOI: https://doi.org/10.1016/j.ecoenv.2018.06.079
López, A. D. Forero, M. Fabiani, V. L. Lassalle, C. V. Spetter and M. D. Fernández Se- verini. (2022). Critical review of the characteristics, interactions, and toxicity of micro/nanomaterials pollutants in aquatic environments. Marine Pollution Bulletin, 174(June 2021). https://doi.org/10.1016/j.marpolbul.2021.113276. DOI: https://doi.org/10.1016/j.marpolbul.2021.113276
Lu, Feng and Didier Astruc. (2020). Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordination Chemistry Reviews, 408:213180. https://doi.org/10.1016/j.ccr.2020.213180. DOI: https://doi.org/10.1016/j.ccr.2020.213180
Lun, Danyang and Ke Xu. (2022). Recent progress in gas sensor based on nanomaterials. Micromachines, 13(6). https://doi.org/10.3390/mi13060919. DOI: https://doi.org/10.3390/mi13060919
Lv, Jitao, Peter Christie and Shuzhen Zhang. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environmental Science: Nano, 6(1): 41-59. https://doi.org/10.1039/C8EN00645H. DOI: https://doi.org/10.1039/C8EN00645H
Martínez-Montelongo, Jorge H., Carlos A. Pineda-Arellano, Rafael Hernández-Rangel, M. L. Jiménez-González, Israel Betancourt, Juan Manuel Peralta-Hernández and Iliana E. Medina-Ramírez. (2024). Bismuth-based nanocomposites as potential materials for indoor air treatment. Chemosphere, 367(September). https://doi.org/10.1016/j.chemosphere.2024.143539. DOI: https://doi.org/10.1016/j.chemosphere.2024.143539
Mateos-Cárdenas, Alicia, Frank N. A. M. van Pelt, John O’Halloran and Marcel A. K. Jansen. (2021). Adsorption, uptake and toxicity of micro- and nanoplastics: effects on terrestrial plants and aquatic macrophytes. Environmental Pollution, 284. https://doi.org/10.1016/j.envpol.2021.117183. DOI: https://doi.org/10.1016/j.envpol.2021.117183
Mbanga, O., Cukrowska, E. and Gulumian, M. (2022). Dissolution of titanium dioxide nanoparticles in synthetic biological and environmental media to predict their biodurability and persistence. Toxicology in vitro, 84. https://doi.org/10.1016/j.tiv.2022.105457. DOI: https://doi.org/10.1016/j.tiv.2022.105457
Medina-Ramírez, Iliana E., Adriana Marroquin-Zamudio, Jorge H. Martínez-Montelongo, Yolanda Romo-Lozano, Juan Antonio Zapien and A. Pérez-Larios. (2022). Enhanced photocatalytic and antifungal activity of ZnO–Cu2+and Ag@ZnO–Cu2+ materials. Ceramics International, 48(9): 12660-74. https://doi.org/10.1016/j.ceramint.2022.01.136. DOI: https://doi.org/10.1016/j.ceramint.2022.01.136
Mintis, Dimitris G., Nikolaos Cheimarios, Andreas Tsoumanis, Anastasios G. Papadiamantis, Nico W. van den Brink, Henk J. van Lingen, Georgia Melagraki, Iseult Lynch and Antreas Afantitis. (2024). NanoBioAccumulate: modelling the uptake and bioaccumulation of nanomaterials in soil and aquatic invertebrates via the Enalos DIAGONAL cloud platform. Computational and Structural Biotechnology Journal, 25(October): 243-55. https://doi.org/10.1016/j.csbj.2024.09.028. DOI: https://doi.org/10.1016/j.csbj.2024.09.028
Moermond, Caroline T. A., Robert Kase, Muris Korkaric and Marlene Ågerstrand. (2015). CRED: criteria for reporting and evaluating ecotoxicity data. Environmental Toxicology and Chemistry, 35(5): 1297-1309. https://doi.org/10.1002/etc.3259. DOI: https://doi.org/10.1002/etc.3259
Naasz, Steffi, Rolf Altenburger and Dana Kühnel. (2018). Environmental mixtures of nanomaterials and chemicals: the Trojan-horse phenomenon and its relevance for ecotoxicity. Science of the Total Environment. Elsevier B. V. https://doi.org/10.1016/j.scitotenv.2018.04.180. DOI: https://doi.org/10.1016/j.scitotenv.2018.04.180
OECD. (2025). Nanomaterials and advanced materials. Paris: Organisation for Economic Co-operation and Development. https://www.oecd.org/chemicalsafety/nanosafety/.
Pan, Xiaoru, Jiahui Ji, Nana Zhang and Mingyang Xing. (2020). Research progress of graphene-based nanomaterials for the environmental remediation. Chinese Chemical Letters, 31(6): 1462-73. https://doi.org/10.1016/j.cclet.2019.10.002. DOI: https://doi.org/10.1016/j.cclet.2019.10.002
Pandit, Chetan, Arpita Roy, Suresh Ghotekar, Ameer Khusro, Mohammad Nazmul Islam, Talha Bin Emran, Siok Ee Lam, Mayeen Uddin Khandaker and David Andrew Bradley. (2022). Biological agents for synthesis of nanoparticles and their applications. Journal of King Saud University – Science, 34(3): 101869. https://doi.org/10.1016/j.jksus.2022.101869. DOI: https://doi.org/10.1016/j.jksus.2022.101869
Paramasivam, Gokul, Vishnu Vardhan Palem, Thanigaivel Sundaram, Vickram Sundaram, Somasundaram Chandra Kishore and Stefano Bellucci. (2021). Nanomaterials: synthesis and applications in theranostics. Nanomaterials, 11(12). https://doi.org/10.3390/nano11123228. DOI: https://doi.org/10.3390/nano11123228
Pedroza-Herrera, Gladis, Iliana E. Medina-Ramírez, Juan Antonio Lozano-Álvarez and Sandra E. Rodil. (2019). Evaluation of the photocatalytic activity of copper doped TiO2 nanoparticles for the purification and/or disinfection of industrial effluents. Catalysis Today, 341(February): 37-48. https://doi.org/10.1016/j.cattod.2018.09.017. DOI: https://doi.org/10.1016/j.cattod.2018.09.017
Peng, Cheng, Chensi Shen, Siyuan Zheng, Weiling Yang, Hang Hu, Jianshe Liu and Jiyan Shi. (2017). Transformation of CuO nanoparticles in the aquatic environment: influence of PH, electrolytes and natural organic matter. Nanomaterials, 7(10). https://doi.org/10.3390/nano7100326. DOI: https://doi.org/10.3390/nano7100326
Peng, Zan, Xiaojuan Liu, Wei Zhang, Zhuotong Zeng, Zhifeng Liu, Chang Zhang, Yang Liu et al. (2020). Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environment International. Elsevier Ltd. https://doi.org/10.1016/j.envint.2019.105298. DOI: https://doi.org/10.1016/j.envint.2019.105298
Rasmussen, Kirsten, Mar González, Peter Kearns, Juan Riego Sintes, François Rossi and Phil Sayre. (2016). Review of achievements of the OECD working party on manufactured nanomaterials’ testing and assessment programme. From exploratory testing to test guidelines. Regulatory Toxicology and Pharmacology, 74(February): 147-60. https://doi.org/10.1016/J.YRTPH.2015.11.004. DOI: https://doi.org/10.1016/j.yrtph.2015.11.004
Rawat, Swati, Venkata L. R. Pullagurala, Ishaq O. Adisa, Yi Wang, José R. Peralta-Videa and Jorge L. Gardea-Torresdey. (2018). Factors affecting fate and transport of engineered nanomaterials in terrestrial environments. Current Opinion in Environmental Science and Health, 6: 47-53. https://doi.org/10.1016/j.coesh.2018.07.014. DOI: https://doi.org/10.1016/j.coesh.2018.07.014
Rehman, Naheed and Simon Moore. (2021). An overview of the state of the regulatory and preclinical requirements for nanomaterials including medical devices. Integrated Environmental Assessment and Management, 17(6): 1098-1104. https://doi.org/10.1002/ieam.4426. DOI: https://doi.org/10.1002/ieam.4426
Ren, Chaoxiu, Xiangang Hu and Qixing Zhou. (2016). Influence of environmental factors on nanotoxicity and knowledge gaps thereof. NanoImpact, 2: 82-92. Elsevier. https://doi.org/10.1016/j.impact.2016.07.002. DOI: https://doi.org/10.1016/j.impact.2016.07.002
Rohilla, Deepak, Savita Chaudhary and Ahmad Umar. (2021). An overview of advanced nanomaterials for sensor applications. Engineered Science, 16: 47-70. https://doi.org/10.30919/es8d552.
Saleem, Haleema, Syed Javaid Zaidi, Ahmad Fauzi Ismail and Pei Sean Goh. (2022). Advances of nanomaterials for air pollution remediation and their impacts on the environment. Chemosphere, 287(August 2021): 132083. https://doi.org/ 10.1016/j.chemosphere.2021.132083. DOI: https://doi.org/10.1016/j.chemosphere.2021.132083
Saleh, Tawfik A. (2020). Nanomaterials: classification, properties, and environmental toxicities. Environmental Technology and Innovation, 20: 101067. https://doi.org/10.1016/j.eti.2020.101067. DOI: https://doi.org/10.1016/j.eti.2020.101067
Savolainen, Kai, Harri Alenius, Hannu Norppa, Lea Pylkkänen, Timo Tuomi and Gerhard Kasper. (2010). Risk assessment of engineered nanomaterials and nanotechnologies — A review. Toxicology, 269(2-3): 92-104. https://doi.org/10.1016/J.TOX.2010.01.013. DOI: https://doi.org/10.1016/j.tox.2010.01.013
Schwirn, K., Voelker, D., Galert, W., Quik, J. and Tietjen, L. (2020). Environmental risk assessment of nanomaterials in the light of new obligations under the REACH regulation: which challenges remain and how to approach them? Integrated Environmental Assessment and Management, 16(5): 706-717. https://doi.org/10.1002/ieam.4267. DOI: https://doi.org/10.1002/ieam.4267
Seesaard, Thara, Kamonrat Kamjornkittikoon and Chatchawal Wongchoosuk. (2024). A comprehensive review on advancements in sensors for air pollution applications. Science of the Total Environment, 951(May): 175696. https://doi.org/10.1016/j.scitotenv.2024.175696. DOI: https://doi.org/10.1016/j.scitotenv.2024.175696
Shaniv, D., Dror, I. and Berkowitz, B. (2021). Effects of particle size and surface chemistry on plastic nanoparticle transport in saturated natural porous media. Chemo- sphere, 262: 127854. https://doi.org/10.1016/j.chemosphere.2020.127854. DOI: https://doi.org/10.1016/j.chemosphere.2020.127854
Sigmund, Gabriel, Chuanjia Jiang, Thilo Hofmann and Wei Chen. (2018). Environmental transformation of natural and engineered carbon nanoparticles and implications for the fate of organic contaminants. Environmental Science: Nano. Royal Society of Chemistry. https://doi.org/10.1039/C8EN00676H. DOI: https://doi.org/10.1039/C8EN00676H
Singh, Keshav K. and K. K. Singh. (2022). Role of nanotechnology and nanomaterials for water treatment and environmental remediation. International Journal of New Chemistry, 9(3): 165-90. https://doi.org/10.22034/IJNC.2022.3.6.
Spurgeon, David J., Elma Lahive and Carolin L. Schultz. (2020). Nanomaterial transformations in the environment: effects of changing exposure forms on bioaccumulation and toxicity. Small, 16(36): 1-12. https://doi.org/10.1002/smll.202000618. DOI: https://doi.org/10.1002/smll.202000618
Swirog, Marta, Alicja Mikolajczyk, Karolina Jagiello, Jaak Jänes, Kaido Tämm and Tomasz Puzyn. (2022). Predicting electrophoretic mobility of TiO2, ZnO, and CeO2 nanoparticles in natural waters: the importance of environment descriptors in nanoinformatics models. Science of the Total Environment, 840(March): 1-7. https://doi.org/10.1016/j.scitotenv.2022.156572. DOI: https://doi.org/10.1016/j.scitotenv.2022.156572
Toon van Harmelen, Esther K. Zondervan-van den Beuken, Derk H. Brouwer, Eelco Kuijpers, Wouter Fransman, Harrie B. Buist, Tom N. Ligthart et al. (2016). LICARA NanoSCAN — A tool for the self-assessment of benefits and risks of nanoproducts. Environment International, 91(May): 150-60. https://doi.org/10.1016/J.ENVINT.2016.02.021. DOI: https://doi.org/10.1016/j.envint.2016.02.021
Uddin, Md Nizam, Fenil Desai and Eylem Asmatulu. (2020). Engineered nanomaterials in the environment: bioaccumulation, biomagnification and biotransformation. Environmental Chemistry Letters, 18(4): 1073-83. https://doi.org/10.1007/s10311-019-00947-0. DOI: https://doi.org/10.1007/s10311-019-00947-0
UN Environment Programme (UNEP). (2017). Frontiers 2017: emerging issues of environmental concern. Nairobi: United Nations Environment Programme. https://www.unep.org/resources/frontiers-2017-emerging-issues-environmental-concern.
UN Environment Programme (UNEP). (2020). An assessment report on issues of concern: chemicals and waste issues posing risks to human health and the environment. Nairobi: United Nations Environment Programme. https://www.unep.org/resources/report/assessment-report-issues-concern-chemicals-and-waste-issues-posing-risks-human.
UNITAR (United Nations Institute for Training and Research). (2011). Developing a national nanotechnology policy and programme: pilot guidance document. Geneva: UNITAR. https://cwm.unitar.org/national-profiles/publications/cw/Nano/UNITAR_nano_guidance_Pilot_Edition_2011.pdf.
UNITAR (United Nations Institute for Training and Research). (2025). Nanomaterials safety E-learning course. Chemicals and waste management programme. Geneva: UNITAR. https://unitar.org/courses/nanomaterials-safety-course-8801.
Valerio-García, Roberto Carlos, Iliana E. Medina-Ramírez, Mario A. Arzate-Cárdenas and Ana Laura Carbajal-Hernández. (2021). Evaluation of the environmental impact of magnetic nanostructured materials at different trophic levels. Nanotoxicology, 15(2): 257-75. https://doi.org/10.1080/17435390.2020.1862335. DOI: https://doi.org/10.1080/17435390.2020.1862335
Wahab, Abdul, Murad Muhammad, Shahid Ullah, Gholamreza Abdi, Ghulam Mujtaba Shah, Wajid Zaman and Asma Ayaz. (2024). Agriculture and environmental management through nanotechnology: eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. Science of the Total Environment, 926(December 2023): 171862. https://doi.org/10.1016/j.scitotenv.2024.171862. DOI: https://doi.org/10.1016/j.scitotenv.2024.171862
Wang, Jingwei, Qiao Ma, Zhaojing Zhang, Shuzhen Li, Catherine Sekyerebea Diko, Chunxiao Dai, Henglin Zhang and Yuanyuan Qu. (2020). Bacteria mediated fenton-like reaction drives the biotransformation of carbon nanomaterials. Science of the Total Environment, 746(December). https://doi.org/10.1016/j.scitotenv.2020.141020. DOI: https://doi.org/10.1016/j.scitotenv.2020.141020
Wang, Niyou, Jerry Ying Hsi Fuh, S. Thameem Dheen and A. Senthil Kumar. (2021). Synthesis methods of functionalized nanoparticles: a review. Bio-Design and Manufacturing, 4(2): 379-404. https://doi.org/10.1007/s42242-020-00106-3. DOI: https://doi.org/10.1007/s42242-020-00106-3
Wang, S., Alenius, H., El-Nezami, H. and Karisola, P. (2022). A new look at the effects of engineered ZnO and TiO2 nanoparticles: evidence from transcriptomics studies. Nanomaterials 12(8). MDPI. https://doi.org/10.3390/nano12081247. DOI: https://doi.org/10.3390/nano12081247
Wang, Xingang, Tongshuai Sun, Hui Zhu, Ting Han, Jie Wang and Hongliang Dai. (2020). Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles. Journal of Environmental Management, 267(August). https://doi.org/10.1016/j.jenvman.2020.110656. DOI: https://doi.org/10.1016/j.jenvman.2020.110656
Weng, Xun, Hui Min Fu, Zheng Mao, Peng Yan, Xiao Wei Xu, Yu Shen and You Peng Chen. (2023). Fate of iron nanoparticles in anammox system: dissolution, migration and transformation. Journal of Environmental Management, 348(October): 119323. https://doi.org/10.1016/j.jenvman.2023.119323. DOI: https://doi.org/10.1016/j.jenvman.2023.119323
Yang, Yaning, Shengmin Xu, Guangmin Xu, Rui Liu, An Xu, Shaopeng Chen and Lijun Wu. (2019). Effects of ionic strength on physicochemical properties and toxicity of silver nanoparticles. Science of the Total Environment, 647(January):1088-96. https://doi.org/10.1016/j.scitotenv.2018.08.064. DOI: https://doi.org/10.1016/j.scitotenv.2018.08.064
Yu, Shujun, Hao Tang, Di Zhang, Shuqin Wang, Muqing Qiu, Gang Song, Dong Fu, Baowei Hu and Xiangke Wang. (2022). MXenes as emerging nanomaterials in water purification and environmental remediation. Science of the Total Environment, 811:152280. https://doi.org/10.1016/j.scitotenv.2021.152280. DOI: https://doi.org/10.1016/j.scitotenv.2021.152280
Yu, Xiaoyu, Hui Li, Junwen Wang, Xin Zhang, Rui Jiao, Yuwei Ren and Danfeng Zhang. (2025). Recent advances and future prospects of wearable sensors based on nanomaterial sensing mechanisms for biosafety monitoring. Chemical Engineering Journal, 512(February): 162695. https://doi.org/10.1016/j.cej.2025.162695. DOI: https://doi.org/10.1016/j.cej.2025.162695
Zhang, Shizhong, Sumeet Malik, Nisar Ali, Adnan Khan, Mohammad Bilal and Kashif Rasool. (2022). Covalent and non-covalent functionalized nanomaterials for environmental restoration. Topics in Current Chemistry, 380. Springer International Publishing. https://doi.org/10.1007/s41061-022-00397-3. DOI: https://doi.org/10.1007/s41061-022-00397-3