Síntesis de nanopartículas de oro: evaluación de los métodos de Turkevich, síntesis verde y buffer de Good
Contenido principal del artículo
Resumen
Este trabajo tiene como objetivo evaluar las características destacadas de las nanopartículas de Au sintetizadas mediante metodologías de tipo bottom-up, específicamente el método de Turkevich, el método verde (quercetina) y el método con buffer de Good utilizando dos agentes reductores (MES y PIPES). El tamaño, la forma, la distribución, la carga y la composición de las nanopartículas se caracterizaron utilizando UV-Vis, FTIR, DLS, potencial Zeta, TEM y XRD. Las nanopartículas obtenidas por cada método mostraron diferencias significativas en cuanto a tamaño, forma y uniformidad. Las sintetizadas por el método de Turkevich presentaron un tamaño promedio de 28.7 nm, mayor potencial Zeta y mejor homogeneidad en cuanto a tamaño y forma esférica. El método verde produjo nanopartículas con alta polidispersidad pero mayor pureza. En el método con tampón de Good, PIPES y MES dieron lugar a tamaños de partículas más grandes (37 y 43 nm, respectivamente) y dejaron residuos del agente reductor. Estos resultados muestran que cada técnica ofrece nanopartículas con características únicas para aplicaciones potenciales.
Descargas
Detalles del artículo

Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Abraham, M. E. and Acree, W. E. (2014). On the solubility of quercetin. J. Mol. Liq., 197: 157-159. https://doi.org/10.1016/j.molliq.2014.05.006. DOI: https://doi.org/10.1016/j.molliq.2014.05.006
Ahmed, S. R., Oh, S., Baba, R., Zhou, H., Hwang, S., Lee, J. and Park, E. Y. (2016). Synthesis of gold nanoparticles with buffer-dependent variations of size and morphology in biological buffers. Nanoscale Res. Lett., 11: 65. https://doi.org/10.1186/s11671-016-1290-3. DOI: https://doi.org/10.1186/s11671-016-1290-3
Bhattacharjee, S. (2016). DLS and zeta potential – What they are and what they are not? J. Control. Release., 235: 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017. DOI: https://doi.org/10.1016/j.jconrel.2016.06.017
Catauro, M., Papale, F., Bollino, F., Piccolella, S., Marciano, S., Nocera, P. and Pacifico, S. (2015). Silica/quercetin sol-gel hybrids as antioxidant dental implant materials. Sci. technol. adv. material Meth., 16: 035001. https://doi.org/10.1088/1468-6996/16/3/035001. DOI: https://doi.org/10.1088/1468-6996/16/3/035001
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A. and Mozafari, M. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10: 57. https://doi.org/10.3390/pharmaceutics10020057. DOI: https://doi.org/10.3390/pharmaceutics10020057
Devendiran, R. M., Chinnaiyan, S. K., Yadav, N. K., Ramanathan, G., Singaravelu, S., Perumal, P. T. and Sivagnanam, U. T. (2016). Facile synthesis and evaluation of quercetin reduced and dextran sulphate stabilized gold nanoparticles decorated with folic acid for active targeting against breast cancer. RSC Advances, 39: 1-14. https://doi.org/10.1039/C6RA01756H. DOI: https://doi.org/10.1039/C6RA01756H
Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J. and El-Sayed, M. A. (2012). The golden age: gold nanoparticles for biomedi-cine. Chem. Soc. Rev., 41: 2740-2779. https://doi.org/10.1039/c1cs15237h. DOI: https://doi.org/10.1039/C1CS15237H
Ghosh, S. K. and Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev., 107: 4797-4862. https://doi.org/10.1021/cr0680282. DOI: https://doi.org/10.1021/cr0680282
Giri, A., Makhal, A., Ghosh, B., Raychaudhuri, A. K. and Pal, S. K. (2010). Functionalization of manganite nanoparticles and their interaction with biologically relevant small ligands: picosecond time-resolved FRET studies. Nanoescale, 2: 2704-2709. https://doi.org/10.1039/C0NR00490A. DOI: https://doi.org/10.1039/c0nr00490a
Good, N. E., Douglas, W. G., Wilhelmina, W., Connolly, T. N., Izawa, S. and Singh, R. M. M. (1966). Hydrogen ion buffers for biological research. Biochemistry, 5: 467-477. https://doi.org/10.1021/bi00866a011. DOI: https://doi.org/10.1021/bi00866a011
Huang, X. and El-Sayed, M. A. (2010). Gold nanoparticles: optical properties and implementations in cancer diagnosis and photo-thermal therapy. J. Adv. Res., 1: 13-28. https://doi.org/10.1016/j.jare.2010.02.002. DOI: https://doi.org/10.1016/j.jare.2010.02.002
Jain, P. K., Huang, X., El-Sayed, I. H. and El-Sayed, M. A. (2007). Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2: 107-118. https://doi.org/10.1007/s11468-007-9031-1. DOI: https://doi.org/10.1007/s11468-007-9031-1
Jain, P. K., Lee, K. S., El-Sayed, I. H. and El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B., 110: 7238-7248. https://doi.org/10.1021/jp057170o. DOI: https://doi.org/10.1021/jp057170o
Jamkhande, P. G., Ghule, N. W., Bamer, A. H. and Kalaskar, M. G. (2019). Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 53: 101174. https://doi.org/10.1016/j.jddst.2019.101174. DOI: https://doi.org/10.1016/j.jddst.2019.101174
Jana, N. R., Gearheart, L. and Murphy, C. J. (2001). Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater., 13: 1389-1393. https://doi.org/10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F. DOI: https://doi.org/10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F
Kettemann, F., Birnbaum, A., Witte, S., Wuithschick, M., Pinna, N., Kraehnert, R., Rademann, K. and Polte, J. (2016). Missing piece of the mechanism of the turkevich method: the critical role of citrate protonation. Chem. Mater., 28: 4072-4081. https://doi.org/10.1021/acs.chemmater.6b01796. DOI: https://doi.org/10.1021/acs.chemmater.6b01796
Khan, I., Saeed, K. and Khan, I. (2019). Nanoparticles: properties, applications and toxicities. Arab. J. Chem., 12: 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011
Krajczewski, J., Kołataj, K. and Kudelski, A. (2017). Plasmonic nanoparticles in chemical analysis. RSC Adv., 7: 17559-17576. https://doi.org/10.1039/C7RA01034F. DOI: https://doi.org/10.1039/C7RA01034F
Meyers, M. A., Mishra, A. and Benson, D. J. (2006). Mechanical properties of nanocrystalline materials. Prog. Mater. Sci., 51, 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003. DOI: https://doi.org/10.1016/j.pmatsci.2005.08.003
Millstone, J. E., Hurst, S. J., Metraux, G. S. and Mirkin, C. A. (2009). Colloidal gold and silver triangular nanoprisms. Small, 5: 646-664. https://doi.org/10.1002/smll.200801480. DOI: https://doi.org/10.1002/smll.200801480
Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12: 788-800. https://doi.org/10.1021/la9502711. DOI: https://doi.org/10.1021/la9502711
Murphy, C. J., Sau, T. K., Gole, A. M., Orendorff, C. J., Gao, J., Gou, L. and El-Sayed, M. A. (2005). Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B., 109: 13857-13870. https://doi.org/10.1021/jp0516846. DOI: https://doi.org/10.1021/jp0516846
Nakatuka, Y., Yoshida, H., Fukui, K. and Matuzawa, M. (2015). The effect of particle size distribution on effective zeta-potential by use of the sedimentation method. Adv. Powder. Technol., 26: 650-656. https://doi.org/10.1016/j.apt.2015.01.017. DOI: https://doi.org/10.1016/j.apt.2015.01.017
Narayanan, K. B. and Sakthivel, N. (2008). Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett., 62: 4588-4590. https://doi.org/10.1016/j.matlet.2008.08.044. DOI: https://doi.org/10.1016/j.matlet.2008.08.044
Niu, J., Zhu, T. and Liu, Z. (2007). One-step seed-mediated growth of 30-150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent. Nanotechnology, 18: 3256. https://doi.org/10.1088/0957-4484/18/32/325607. DOI: https://doi.org/10.1088/0957-4484/18/32/325607
Oliveira, A. E. F., Pereira, A. C., Resende, M. A. C. and Ferreira, L. F. (2023). Gold nanoparticles: a didactic step-by-step of the synthesis using the Turkevich method, mechanisms, and characterizations. Analytica, 4: 250-263. https://doi.org/10.3390/analytica4020020. DOI: https://doi.org/10.3390/analytica4020020
Pacioni, N. L., Borsarelli, C. D., Rey, V. and Veglia, A. V. (2015). Synthetic routes for the preparation of silver nanoparticles. In Alarcon, E., Griffith, M., Udekwu K. (eds.), Silver nanoparticle applications, engineering materials. Springer, Cham., 13-46. https://doi.org/10.1007/978-3-319-11262-6_2. DOI: https://doi.org/10.1007/978-3-319-11262-6_2
Patel, V. R. and Agrawal, Y. K. (2011). Nanosuspension: an approach to enhance solubility of drugs. J. Adv. Pharm. Technol. Res., 2: 81-87. https://doi.org/10.4103/2231-4040.82950. DOI: https://doi.org/10.4103/2231-4040.82950
Polte, J. (2015). Fundamental growth principles of colloidal metal nanoparticles – A new perspective. Cryst. Eng. Comm., 17: 6809-6830. https://doi.org/10.1039/C5CE01014D. DOI: https://doi.org/10.1039/C5CE01014D
Rahme, K. and Holmes, J. D. (2015). Gold nanoparticles: aynthesis, characterization, and bioconjugation. In Dekker Encyclopedia of Nanoscience and Nanotechnology. 3: 1-11. CRC Press. DOI: https://doi.org/10.1081/E-ENN3-120053520
Scholl, J., Koh, A. and Dionne, J. (2012). Quantum plasmon resonances of individual metallic nanoparticles. Nature, 483: 421-427. https://doi.org/10.1038/nature10904. DOI: https://doi.org/10.1038/nature10904
Szunerits, S., Spadavecchia, J. and Boukherroub, R. (2014). Surface plasmon resonance: signal amplification using colloidal gold nano-particles for enhanced sensitivity. Rev. Anal. Chem. 33: 153-164. https://doi.org/10.1515/revac-2014-0011. DOI: https://doi.org/10.1515/revac-2014-0011
Turkevich, J., Stevenson, P. C. and Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11: 55-75. https://doi.org/10.1039/DF9511100055. DOI: https://doi.org/10.1039/df9511100055
Vergara-Castañeda, H., Granados-Segura, L., Luna-Bárcenas, G., McClements, D. J., Herrera-Hernández, M. G., Arjona, N., Hernández-Martínez, A. R., Estevez, M. and Pool, H. (2019). Gold nanoparticles bioreduced by natural extracts of arantho (Kalanchoe daigremontiana) for biological purposes: physicochemical, antioxidant and antiproliferative evaluations. Mater. Res. Express, 6: 055010. https://doi.org/10.1088/2053-1591/ab0155. DOI: https://doi.org/10.1088/2053-1591/ab0155
Wang, N., Cheng, X., Li, N., Wang, H. and Chen, H. (2019). Nanocarriers and their loading strategies. Adv. Healthc. Mater, 8: 1801002. https://doi.org/10.1002/adhm.201801002. DOI: https://doi.org/10.1002/adhm.201801002
Webster, F. X., Kiemle, D. J., Silverstein, R. M. and Bryce, D. L. (2014). Spectrometric identification of organic compounds. 8th ed. Wiley.
Zuki, N. M., Ismail, N. and Omar, F. M. (2019). Evaluation of zeta potential and particle size measurements of multiple coagulants in semiconductor wastewater. AIP Conference Proceedings, 2124: 020036. https://doi.org/10.1063/1.5117096. DOI: https://doi.org/10.1063/1.5117096