Síntesis de nanopartículas de oro: evaluación de los métodos de Turkevich, síntesis verde y buffer de Good

Contenido principal del artículo

Fátima del Rosario Balderas-Vázquez
https://orcid.org/0009-0005-5785-4079
Diego Bravo Alfaro
https://orcid.org/0000-0003-3612-7743
Sandra Herrera-Pérez
https://orcid.org/0009-0002-6305-6143
Micael Gerardo Bravo-Sánchez
https://orcid.org/0000-0003-3083-4172
Héctor Pool
https://orcid.org/0000-0002-6742-3839
Noé Arjona
Gabriel Luna-Bárcenas
Francisco Villaseñor-Ortega
https://orcid.org/0000-0002-7190-0511

Resumen

Este trabajo tiene como objetivo evaluar las características destacadas de las nanopartículas de Au sintetizadas mediante metodologías de tipo bottom-up, específicamente el método de Turkevich, el método verde (quercetina) y el método con buffer de Good utilizando dos agentes reductores (MES y PIPES). El tamaño, la forma, la distribución, la carga y la composición de las nanopartículas se caracterizaron utilizando UV-Vis, FTIR, DLS, potencial Zeta, TEM y XRD. Las nanopartículas obtenidas por cada método mostraron diferencias significativas en cuanto a tamaño, forma y uniformidad. Las sintetizadas por el método de Turkevich presentaron un tamaño promedio de 28.7 nm, mayor potencial Zeta y mejor homogeneidad en cuanto a tamaño y forma esférica. El método verde produjo nanopartículas con alta polidispersidad pero mayor pureza. En el método con tampón de Good, PIPES y MES dieron lugar a tamaños de partículas más grandes (37 y 43 nm, respectivamente) y dejaron residuos del agente reductor. Estos resultados muestran que cada técnica ofrece nanopartículas con características únicas para aplicaciones potenciales.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Balderas-Vázquez, F. del R., Bravo Alfaro, D., Herrera-Pérez, S., Bravo-Sánchez, M. G., Pool, H., Arjona, N., … Villaseñor-Ortega, F. (2025). Síntesis de nanopartículas de oro: evaluación de los métodos de Turkevich, síntesis verde y buffer de Good. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 19(36), e69861. https://doi.org/10.22201/ceiich.24485691e.2026.36.69861
Sección
Artículos de investigación

Citas

Abraham, M. E. and Acree, W. E. (2014). On the solubility of quercetin. J. Mol. Liq., 197: 157-159. https://doi.org/10.1016/j.molliq.2014.05.006. DOI: https://doi.org/10.1016/j.molliq.2014.05.006

Ahmed, S. R., Oh, S., Baba, R., Zhou, H., Hwang, S., Lee, J. and Park, E. Y. (2016). Synthesis of gold nanoparticles with buffer-dependent variations of size and morphology in biological buffers. Nanoscale Res. Lett., 11: 65. https://doi.org/10.1186/s11671-016-1290-3. DOI: https://doi.org/10.1186/s11671-016-1290-3

Bhattacharjee, S. (2016). DLS and zeta potential – What they are and what they are not? J. Control. Release., 235: 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017. DOI: https://doi.org/10.1016/j.jconrel.2016.06.017

Catauro, M., Papale, F., Bollino, F., Piccolella, S., Marciano, S., Nocera, P. and Pacifico, S. (2015). Silica/quercetin sol-gel hybrids as antioxidant dental implant materials. Sci. technol. adv. material Meth., 16: 035001. https://doi.org/10.1088/1468-6996/16/3/035001. DOI: https://doi.org/10.1088/1468-6996/16/3/035001

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A. and Mozafari, M. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10: 57. https://doi.org/10.3390/pharmaceutics10020057. DOI: https://doi.org/10.3390/pharmaceutics10020057

Devendiran, R. M., Chinnaiyan, S. K., Yadav, N. K., Ramanathan, G., Singaravelu, S., Perumal, P. T. and Sivagnanam, U. T. (2016). Facile synthesis and evaluation of quercetin reduced and dextran sulphate stabilized gold nanoparticles decorated with folic acid for active targeting against breast cancer. RSC Advances, 39: 1-14. https://doi.org/10.1039/C6RA01756H. DOI: https://doi.org/10.1039/C6RA01756H

Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J. and El-Sayed, M. A. (2012). The golden age: gold nanoparticles for biomedi-cine. Chem. Soc. Rev., 41: 2740-2779. https://doi.org/10.1039/c1cs15237h. DOI: https://doi.org/10.1039/C1CS15237H

Ghosh, S. K. and Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev., 107: 4797-4862. https://doi.org/10.1021/cr0680282. DOI: https://doi.org/10.1021/cr0680282

Giri, A., Makhal, A., Ghosh, B., Raychaudhuri, A. K. and Pal, S. K. (2010). Functionalization of manganite nanoparticles and their interaction with biologically relevant small ligands: picosecond time-resolved FRET studies. Nanoescale, 2: 2704-2709. https://doi.org/10.1039/C0NR00490A. DOI: https://doi.org/10.1039/c0nr00490a

Good, N. E., Douglas, W. G., Wilhelmina, W., Connolly, T. N., Izawa, S. and Singh, R. M. M. (1966). Hydrogen ion buffers for biological research. Biochemistry, 5: 467-477. https://doi.org/10.1021/bi00866a011. DOI: https://doi.org/10.1021/bi00866a011

Huang, X. and El-Sayed, M. A. (2010). Gold nanoparticles: optical properties and implementations in cancer diagnosis and photo-thermal therapy. J. Adv. Res., 1: 13-28. https://doi.org/10.1016/j.jare.2010.02.002. DOI: https://doi.org/10.1016/j.jare.2010.02.002

Jain, P. K., Huang, X., El-Sayed, I. H. and El-Sayed, M. A. (2007). Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2: 107-118. https://doi.org/10.1007/s11468-007-9031-1. DOI: https://doi.org/10.1007/s11468-007-9031-1

Jain, P. K., Lee, K. S., El-Sayed, I. H. and El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B., 110: 7238-7248. https://doi.org/10.1021/jp057170o. DOI: https://doi.org/10.1021/jp057170o

Jamkhande, P. G., Ghule, N. W., Bamer, A. H. and Kalaskar, M. G. (2019). Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 53: 101174. https://doi.org/10.1016/j.jddst.2019.101174. DOI: https://doi.org/10.1016/j.jddst.2019.101174

Jana, N. R., Gearheart, L. and Murphy, C. J. (2001). Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater., 13: 1389-1393. https://doi.org/10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F. DOI: https://doi.org/10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F

Kettemann, F., Birnbaum, A., Witte, S., Wuithschick, M., Pinna, N., Kraehnert, R., Rademann, K. and Polte, J. (2016). Missing piece of the mechanism of the turkevich method: the critical role of citrate protonation. Chem. Mater., 28: 4072-4081. https://doi.org/10.1021/acs.chemmater.6b01796. DOI: https://doi.org/10.1021/acs.chemmater.6b01796

Khan, I., Saeed, K. and Khan, I. (2019). Nanoparticles: properties, applications and toxicities. Arab. J. Chem., 12: 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011

Krajczewski, J., Kołataj, K. and Kudelski, A. (2017). Plasmonic nanoparticles in chemical analysis. RSC Adv., 7: 17559-17576. https://doi.org/10.1039/C7RA01034F. DOI: https://doi.org/10.1039/C7RA01034F

Meyers, M. A., Mishra, A. and Benson, D. J. (2006). Mechanical properties of nanocrystalline materials. Prog. Mater. Sci., 51, 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003. DOI: https://doi.org/10.1016/j.pmatsci.2005.08.003

Millstone, J. E., Hurst, S. J., Metraux, G. S. and Mirkin, C. A. (2009). Colloidal gold and silver triangular nanoprisms. Small, 5: 646-664. https://doi.org/10.1002/smll.200801480. DOI: https://doi.org/10.1002/smll.200801480

Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12: 788-800. https://doi.org/10.1021/la9502711. DOI: https://doi.org/10.1021/la9502711

Murphy, C. J., Sau, T. K., Gole, A. M., Orendorff, C. J., Gao, J., Gou, L. and El-Sayed, M. A. (2005). Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B., 109: 13857-13870. https://doi.org/10.1021/jp0516846. DOI: https://doi.org/10.1021/jp0516846

Nakatuka, Y., Yoshida, H., Fukui, K. and Matuzawa, M. (2015). The effect of particle size distribution on effective zeta-potential by use of the sedimentation method. Adv. Powder. Technol., 26: 650-656. https://doi.org/10.1016/j.apt.2015.01.017. DOI: https://doi.org/10.1016/j.apt.2015.01.017

Narayanan, K. B. and Sakthivel, N. (2008). Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett., 62: 4588-4590. https://doi.org/10.1016/j.matlet.2008.08.044. DOI: https://doi.org/10.1016/j.matlet.2008.08.044

Niu, J., Zhu, T. and Liu, Z. (2007). One-step seed-mediated growth of 30-150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent. Nanotechnology, 18: 3256. https://doi.org/10.1088/0957-4484/18/32/325607. DOI: https://doi.org/10.1088/0957-4484/18/32/325607

Oliveira, A. E. F., Pereira, A. C., Resende, M. A. C. and Ferreira, L. F. (2023). Gold nanoparticles: a didactic step-by-step of the synthesis using the Turkevich method, mechanisms, and characterizations. Analytica, 4: 250-263. https://doi.org/10.3390/analytica4020020. DOI: https://doi.org/10.3390/analytica4020020

Pacioni, N. L., Borsarelli, C. D., Rey, V. and Veglia, A. V. (2015). Synthetic routes for the preparation of silver nanoparticles. In Alarcon, E., Griffith, M., Udekwu K. (eds.), Silver nanoparticle applications, engineering materials. Springer, Cham., 13-46. https://doi.org/10.1007/978-3-319-11262-6_2. DOI: https://doi.org/10.1007/978-3-319-11262-6_2

Patel, V. R. and Agrawal, Y. K. (2011). Nanosuspension: an approach to enhance solubility of drugs. J. Adv. Pharm. Technol. Res., 2: 81-87. https://doi.org/10.4103/2231-4040.82950. DOI: https://doi.org/10.4103/2231-4040.82950

Polte, J. (2015). Fundamental growth principles of colloidal metal nanoparticles – A new perspective. Cryst. Eng. Comm., 17: 6809-6830. https://doi.org/10.1039/C5CE01014D. DOI: https://doi.org/10.1039/C5CE01014D

Rahme, K. and Holmes, J. D. (2015). Gold nanoparticles: aynthesis, characterization, and bioconjugation. In Dekker Encyclopedia of Nanoscience and Nanotechnology. 3: 1-11. CRC Press. DOI: https://doi.org/10.1081/E-ENN3-120053520

Scholl, J., Koh, A. and Dionne, J. (2012). Quantum plasmon resonances of individual metallic nanoparticles. Nature, 483: 421-427. https://doi.org/10.1038/nature10904. DOI: https://doi.org/10.1038/nature10904

Szunerits, S., Spadavecchia, J. and Boukherroub, R. (2014). Surface plasmon resonance: signal amplification using colloidal gold nano-particles for enhanced sensitivity. Rev. Anal. Chem. 33: 153-164. https://doi.org/10.1515/revac-2014-0011. DOI: https://doi.org/10.1515/revac-2014-0011

Turkevich, J., Stevenson, P. C. and Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11: 55-75. https://doi.org/10.1039/DF9511100055. DOI: https://doi.org/10.1039/df9511100055

Vergara-Castañeda, H., Granados-Segura, L., Luna-Bárcenas, G., McClements, D. J., Herrera-Hernández, M. G., Arjona, N., Hernández-Martínez, A. R., Estevez, M. and Pool, H. (2019). Gold nanoparticles bioreduced by natural extracts of arantho (Kalanchoe daigremontiana) for biological purposes: physicochemical, antioxidant and antiproliferative evaluations. Mater. Res. Express, 6: 055010. https://doi.org/10.1088/2053-1591/ab0155. DOI: https://doi.org/10.1088/2053-1591/ab0155

Wang, N., Cheng, X., Li, N., Wang, H. and Chen, H. (2019). Nanocarriers and their loading strategies. Adv. Healthc. Mater, 8: 1801002. https://doi.org/10.1002/adhm.201801002. DOI: https://doi.org/10.1002/adhm.201801002

Webster, F. X., Kiemle, D. J., Silverstein, R. M. and Bryce, D. L. (2014). Spectrometric identification of organic compounds. 8th ed. Wiley.

Zuki, N. M., Ismail, N. and Omar, F. M. (2019). Evaluation of zeta potential and particle size measurements of multiple coagulants in semiconductor wastewater. AIP Conference Proceedings, 2124: 020036. https://doi.org/10.1063/1.5117096. DOI: https://doi.org/10.1063/1.5117096

Artículos similares

También puede {advancedSearchLink} para este artículo.