Toxicidad diferencial de nanopartículas de Ag y TiO2: un estudio comparativo en células endoteliales humanas y embriones de pez cebra
Contenido principal del artículo
Resumen
Este estudio compara la toxicidad de nanopartículas de plata (Ag NPs, 20 nm) y dióxido de titanio (TiO₂ NPs, 30 nm, fase anatasa) en células HUVEC y embriones de pez cebra. La caracterización, mediante microscopía electrónica, difracción de rayos X y espectroscopía UV-Vis, confirmó sus dimensiones nanoestructuradas y su tendencia a agregarse. En medios biológicos, ambas mostraron incrementos en diámetro hidrodinámico, atribuido a un recubrimiento de PVP que reduce su biodisponibilidad. Las NPs de Ag disminuyeron de tamaño en agua para embriones, mientras que las de TiO₂ aumentaron en medio F-12. In vitro, las NPs de Ag exhibieron mayor citotoxicidad, vinculada a la potencial liberación de iones Ag⁺ y a estrés oxidativo. En pez cebra, las NPs de TiO₂ causaron pérdida de pigmentación y reducción de supervivencia (83.13% a 25 µg/mL), mientras que las de Ag mostraron toxicidad mínima, pese a acumularse en el corion. Esta divergencia se explica por el recubrimiento de PVP, que podría estar inhibiendo la liberación de Ag⁺ in vivo, pero no en cultivos ricos en proteínas. Los resultados revelan perfiles tóxicos modelo-dependientes: las NPs de Ag poseen mayor riesgo celular, mientras que las de TiO₂ afectan procesos de desarrollo en vertebrados. El estudio enfatiza la necesidad de integrar caracterización fisicoquímica y evaluaciones multimodelo para evaluaciones nanotoxicológicas precisas.
Descargas
Detalles del artículo

Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Bar-Ilan, Ofek, Kacie M. Louis, Sarah P. Yang, Joel A. Pedersen, Robert J. Hamers, Richard E. Peterson y Warren Heideman. (2012). Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology, 6(6): 670-79. https://doi.org/10.3109/17435390.2011.604438. DOI: https://doi.org/10.3109/17435390.2011.604438
Cao, Yi, Yu Gong, Liangliang Liu, Yiwei Zhou, Xin Fang, Cao Zhang, Yining Li y Juan Li. (2017). The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. Journal of Applied Toxicology. John Wiley and Sons Ltd. https://doi.org/10.1002/jat.3470. DOI: https://doi.org/10.1002/jat.3470
Chakraborty, Chiranjib, Ashish Ranjan Sharma, Garima Sharma y Sang Soo Lee. (2016). Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. Journal of Nanobiotechnology, 14(1). https://doi.org/10.1186/s12951-016-0217-6. DOI: https://doi.org/10.1186/s12951-016-0217-6
Chen, Te Hao, Chun Yao Lin y Mei Chen Tseng. (2011). Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Marine Pollution Bulletin, 63(5-12): 303-8. https://doi.org/10.1016/j.marpolbul.2011.04.017. DOI: https://doi.org/10.1016/j.marpolbul.2011.04.017
Dagmara Malina, Agnieszka Sobczak-Kupiec, Zbigniew Wzorek, Zygmunt Kowalski. (2012). Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Digest Journal of Nanomaterials and Biostructures, 7(4): 1527-1534. DOI: https://doi.org/10.1049/mnl.2012.0415
Egbuna, Chukwuebuka, Vijaykumar K. Parmar, Jaison Jeevanandam, Shahira M. Ezzat, Kingsley C. Patrick-Iwuanyanwu, Charles Oluwaseun Adetunji, Johra Khan et al. (2021). Toxicity of nanoparticles in biomedical application: nanotoxicology. Journal of Toxicology. Hindawi Limited. https://doi.org/10.1155/2021/9954443. DOI: https://doi.org/10.1155/2021/9954443
Elzein, Basma. (2024). Nano revolution: tiny tech, big impact: how nanotechnology is driving SDGs progress. Heliyon. Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2024.e31393. DOI: https://doi.org/10.2139/ssrn.4565472
Emamhadi, Mohammad Ali, Mansour Sarafraz, Mitra Akbari, Van Nam Thai, Yadolah Fakhri, Nguyen Thi Thuy Linh y Amin Mousavi Khaneghah. (2020). Nanomaterials for food packaging applications: a systematic review. Food and Chemical Toxicology, 146(diciembre). https://doi.org/10.1016/j.fct.2020.111825. DOI: https://doi.org/10.1016/j.fct.2020.111825
Escamilla-Rivera, V., Solorio-Rodríguez, A., Uribe-Ramírez, M., Lozano, O., Lucas, S., Chagolla-López, A., Winkler, R. y De Vizcaya-Ruiz, A. (2019). Plasma protein adsorption on Fe₃O₄–PEG nanoparticles activates the complement system and induces an inflammatory response. International Journal of Nanomedicine, 14(marzo): 2055-2067. https://doi.org/10.2147/ijn.s192214. DOI: https://doi.org/10.2147/IJN.S192214
Fadeel, Bengt. (2022). Nanomaterial characterization: understanding nano-bio interactions. Biochemical and Biophysical Research Communications. Elsevier B. V. https://doi.org/10.1016/j.bbrc.2022.08.095. DOI: https://doi.org/10.1016/j.bbrc.2022.08.095
Fadeel, Bengt, Andrea Fornara, Muhammet S. Toprak y Kunal Bhattacharya. (2015). Keeping it real: the importance of material characterization in nanotoxicology. Biochemical and Biophysical Research Communications. Academic Press Inc. https://doi.org/10.1016/j.bbrc.2015.06.178. DOI: https://doi.org/10.1016/j.bbrc.2015.06.178
Gholinejad, Zafar, Mohammad Hasan Khadem Ansari y Yousef Rasmi. (2019). Titanium dioxide nanoparticles induce endothelial cell apoptosis via cell membrane oxidative damage and P38, PI3K/Akt, NF-ΚB signaling pathways modulation. Journal of Trace Elements in Medicine and Biology, 54(julio): 27-35. https://doi.org/10.1016/j.jtemb.2019.03.008. DOI: https://doi.org/10.1016/j.jtemb.2019.03.008
Haque, Enamul y Alister Ward. (2018). Zebrafish as a model to evaluate nanoparticle toxicity. Nanomaterials, 8(7): 561. https://doi.org/10.3390/nano8070561. DOI: https://doi.org/10.3390/nano8070561
Horzmann, Katharine A. y Jennifer L. Freeman. (2018). Making waves: new developments in toxicology with the zebrafish. Toxicological Sciences. Oxford University Press. https://doi.org/10.1093/toxsci/kfy044. DOI: https://doi.org/10.1093/toxsci/kfy044
Johnston, H. J., Hutchison, G. R., Christensen, F. M., Peters, S., Hankin, S. y Stone, V. (2009). Identification of the mechanisms that drive the toxicity of TiO₂ particulates: the contribution of physicochemical characteristics. Particle and Fibre Toxicology, 6(1), 33. https://doi.org/10.1186/1743-8977-6-33. DOI: https://doi.org/10.1186/1743-8977-6-33
Joudeh, Nadeem y Dirk Linke. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology, 20(1). https://doi.org/10.1186/s12951-022-01477-8. DOI: https://doi.org/10.1186/s12951-022-01477-8
Kim, M. S., K. M. Louis, J. A. Pedersen, R. J. Hamers, R. E. Peterson y W. Heideman. (2014). Using citrate-functionalized TiO₂ nanoparticles to study the effect of particle size on zebrafish embryo toxicity. Analyst, 139(5): 964-72. https://doi.org/10.1039/c3an01966g. DOI: https://doi.org/10.1039/c3an01966g
Kukia, Nasim Rahmani, Yousef Rasmi, Ardeshir Abbasi, Nana Koshoridze, Alireza Shirpoor, Giorgi Burjanadze y Ehsan Saboory. (2018). Bio-effects of TiO₂ nanoparticles on human colorectal cancer and umbilical vein endothelial cell lines. Asian Pacific Journal of Cancer Prevention, 19(10): 2821-29. https://doi.org/10.22034/APJCP.2018.19.10.2821.
Lee, Kerry J., Lauren M. Browning, Prakash D. Nallathamby, Tanvi Desai, Pavan K. Cherukuri y Xiao Hong Nancy Xu. (2012). In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos. Chemical Research in Toxicology, 25(5): 1029-46. https://doi.org/10.1021/tx300021u. DOI: https://doi.org/10.1021/tx300021u
Li, Penghui, Min Su, Xiaodan Wang, Xiaoyan Zou, Xia Sun, Junpeng Shi y Hongwu Zhang. (2020). Environmental fate and behavior of silver nanoparticles in natural estuarine systems. Journal of Environmental Sciences (China), 88(febrero): 248-59. https://doi.org/10.1016/j.jes.2019.09.013. DOI: https://doi.org/10.1016/j.jes.2019.09.013
Macrae, Calum A. y Randall T. Peterson. (2025). Zebrafish as a mainstream model for in vivo systems pharmacology and toxicology. Annual Review of Pharmacology and Toxicology, 57: 43-64. https://doi.org/10.1146/annurev-pharmtox-051421. DOI: https://doi.org/10.1146/annurev-pharmtox-051421-105617
Mahmoudi, Morteza. (2021). The need for robust characterization of nanomaterials for nanomedicine applications. Nature Communications. Nature Research. https://doi.org/10.1038/s41467-021-25584-6. DOI: https://doi.org/10.1038/s41467-021-25584-6
Manzoor, Qaisar, Arfaa Sajid, Zulfiqar Ali, Arif Nazir, Anam Sajid, Faiza Imtiaz, Shahid Iqbal, Umer Younas, Hamza Arif y Munawar Iqbal. (2024). Toxicity spectrum and detrimental effects of titanium dioxide nanoparticles as an emerging pollutant: a review. Desalination and Water Treatment, 317(enero). https://doi.org/10.1016/j.dwt.2024.100025. DOI: https://doi.org/10.1016/j.dwt.2024.100025
Montiel-Dávalos, Angélica, José Luis Ventura-Gallegos, Ernesto Alfaro-Moreno, Elizabeth Soria-Castro, Ethel García-Latorre, José Gerardo Cabañas-Moreno, María del Pilar Ramos-Godínez y Rebeca López-Marure. (2012). TiO₂ nanoparticles induce dysfunction and activation of human endothelial cells. Chemical Research in Toxicology, 25(4): 920-30. https://doi.org/10.1021/tx200551u. DOI: https://doi.org/10.1021/tx200551u
OECD. (2013). Test guideline No. 236: Fish embryo acute toxicity (FET) Test. Julio, 509-11. https://doi.org/10.3109/9781841848570-66. DOI: https://doi.org/10.3109/9781841848570-66
Ohsaka, T., Izumi, F. y Fujiki, Y. (1978). Raman spectrum of anatase, TiO₂. Journal of Raman Spectroscopy, 7(6): 321-324. https://doi.org/10.1002/jrs.1250070606. DOI: https://doi.org/10.1002/jrs.1250070606
Osborne, Olivia J., Blair D. Johnston, Julian Moger, Mohammed Balousha, Jamie R. Lead, Tetsuhiro Kudoh y Charles R. Tyler. (2013). Effects of particle size and coating on nanoscale Ag and TiO₂ exposure in zebrafish (Danio rerio) Embryos. Nanotoxicology, 7(8): 1315-24. https://doi.org/10.3109/17435390.2012.737484. DOI: https://doi.org/10.3109/17435390.2012.737484
Pant, Bishweshwar, Mira Park y Soo Jin Park. (2019). Recent advances in TiO₂ films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities. Coatings. MDPI AG. https://doi.org/10.3390/coatings9100613. DOI: https://doi.org/10.3390/coatings9100613
Paterson, Gordon, Jamie M. Ataria, M. Ehsanul Hoque, Darcy C. Burns y Chris D. Metcalfe. (2011). The toxicity of titanium dioxide nanopowder to early life stages of the Japanese Medaka (Oryzias latipes). Chemosphere, 82(7): 1002-9. https://doi.org/10.1016/j.chemosphere.2010.10.068. DOI: https://doi.org/10.1016/j.chemosphere.2010.10.068
Qiang, Liyuan, Zeinab H. Arabeyyat, Qi Xin, Vesselin N. Paunov, Imogen J. F. Dale, Richard I. Lloyd Mills, Jeanette M. Rotchell y Jinping Cheng. (2020). Silver nanoparticles in zebrafish (Danio rerio) embryos: uptake, growth and molecular responses. International Journal of Molecular Sciences, 21(5). https://doi.org/10.3390/ijms21051876. DOI: https://doi.org/10.3390/ijms21051876
Raval, Nidhi, Rahul Maheshwari, Dnyaneshwar Kalyane, Susanne R. Youngren-Ortiz, Mahavir B. Chougule y Rakesh K. Tekade. (2018). Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic Fundamentals of Drug Delivery, 369-400. Elsevier. https://doi.org/10.1016/B978-0-12-817909-3.00010-8. DOI: https://doi.org/10.1016/B978-0-12-817909-3.00010-8
Romih, Tea, Anita Jemec, Monika Kos, Samo B. Hočevar, Slavko Kralj, Darko Makovec y Damjana Drobne. (2016). The role of PVP in the bioavailability of Ag from the PVP-stabilized Ag nanoparticle suspension. Environmental Pollution, 218(noviembre): 957-64. https://doi.org/10.1016/j.envpol.2016.08.044. DOI: https://doi.org/10.1016/j.envpol.2016.08.044
Schaumann, Gabriele E., Allan Philippe, Mirco Bundschuh, George Metreveli, Sondra Klitzke, Denis Rakcheev, Alexandra Grün et al. (2015). Understanding the fate and biological effects of Ag- and TiO₂-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Science of The Total Environment. Elsevier B. V. https://doi.org/10.1016/j.scitotenv.2014.10.035. DOI: https://doi.org/10.1016/j.scitotenv.2014.10.035
Shao, Xinting, Dandan Xiao, Zhaoyi Yang, Lulu Jiang, Yong Li, Ye Wang y Yuling Ding. (2024). Frontier of toxicology studies in zebrafish model. Journal of Applied Toxicology. John Wiley and Sons Ltd. https://doi.org/10.1002/jat.4543. DOI: https://doi.org/10.1002/jat.4543
Shi, Junpeng, Xia Sun, Yi Lin, Xiaoyan Zou, Zhanjun Li, Yanyan Liao, Miaomiao Du y Hongwu Zhang. (2014). Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-ΚB pathways. Biomaterials, 35(24): 6657-66. https://doi.org/10.1016/j.biomaterials.2014.04.093. DOI: https://doi.org/10.1016/j.biomaterials.2014.04.093
Sikder, Mithun, Jamie R. Lead, G. Thomas Chandler y Mohammed Baalousha. (2018). A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV-vis. Science of The Total Environment, 618(marzo): 597-607. https://doi.org/10.1016/j.scitotenv.2017.04.055. DOI: https://doi.org/10.1016/j.scitotenv.2017.04.055
Zhang, C., Willett, C. y Fremgen, T. (2003). Zebrafish: an animal model for toxicological studies. Current Protocols in Toxicology, 17(1). https://doi.org/10.1002/0471140856.tx0107s17. DOI: https://doi.org/10.1002/0471140856.tx0107s17
Zhu, Renfei, Chunlan Liu, Jingyu Wang, Li Zou, Fan Yang, Xia Chi y Jiansheng Zhu. (2023). Nano-TiO₂ aggravates bioaccumulation and developmental neurotoxicity of difenoconazole in zebrafish larvae via oxidative stress and apoptosis: protective role of vitamin C. Ecotoxicology and Environmental Safety, 251(febrero). https://doi.org/10.1016/j.ecoenv.2023.114554. DOI: https://doi.org/10.1016/j.ecoenv.2023.114554
Zielińska, Aleksandra, Beatriz Costa, María V. Ferreira, Diogo Miguéis, Jéssica M. S. Louros, Alessandra Durazzo, Massimo Lucarini et al. (2020). Nanotoxicology and nanosafety: safety-by-design and testing at a glance. International Journal of Environmental Research and Public Health. MDPI AG. https://doi.org/10.3390/ijerph17134657. DOI: https://doi.org/10.3390/ijerph17134657