Estado de las directrices de la OCDE sobre el cumplimiento normativo de los materiales bidimensionales: un estudio de caso del grafeno
Contenido principal del artículo
Resumen
La evaluación regulatoria del grafeno y otros materiales bidimensionales (2D) presenta desafíos significativos debido a las propiedades fisicoquímicas únicas de estos materiales. Dado que el grafeno es el nanomaterial 2D más utilizado y uno de los más variables estructuralmente, constituye un caso de estudio crucial para evaluar la aplicabilidad de los protocolos de ensayo de la OCDE, utilizados de manera generalizada en ensayos toxicológicos. Reforzar esta conexión es particularmente importante, pues los métodos aceptados por la OCDE respaldan el cumplimiento regulatorio en marcos como el reglamento REACH de la UE y la Ley de Control de Sustancias Tóxicas de EUA, lo cual significa que las deficiencias en la idoneidad de las directrices afectan directamente la autorización de comercialización y la gestión de riesgos. Las Directrices de Ensayo (Test Guidelines (TG), por sus siglas en inglés) y los Documentos de Orientación (Guidance (GD), por sus siglas en inglés) de la OCDE existentes se desarrollaron principalmente para productos químicos convencionales y, a menudo, no abordan adecuadamente las especificidades de los materiales 2D. Estas se deben a sus estructuras atómicamente delgadas y estratificadas, y a su confinamiento cuántico en una sola dimensión. Este artículo ofrece una visión general crítica del estado actual de la aplicabilidad de las directrices de la OCDE para el grafeno y propone futuras direcciones para armonizar los enfoques de las pruebas regulatorias con el fin de garantizar la seguridad y el cumplimiento.
Descargas
Detalles del artículo

Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Anasori, Babak, Maria R. Lukatskaya and Yury Gogotsi. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2(2): 16098. https://doi.org/10.1038/natrevmats.2016.98. DOI: https://doi.org/10.1038/natrevmats.2016.98
Chhowalla, Manish, Hyun Seok Shin, Goki Eda and et al. (2013). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 5(4): 263-75. https://doi.org/10.1038/nchem.1589. DOI: https://doi.org/10.1038/nchem.1589
Connolly, M., G. Moles, F. Candotto Carniel et al. (2023). Applicability of OECD TG 201, 202, 203 for the aquatic toxicity testing and assessment of 2D graphene material nanoforms to meet regulatory needs. NanoImpact, 29(January): 100447. https://doi.org/10.1016/j.impact.2022.100447. DOI: https://doi.org/10.1016/j.impact.2022.100447
Dean, C. R., A. F. Young, I. Meric et al. (2010). Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 5(10): 722-26. https://doi.org/10.1038/nnano.2010.172. DOI: https://doi.org/10.1038/nnano.2010.172
Eggeman, Alexander S., Steffen Illig, Alessandro Troisi, Henning Sirringhaus and Paul A. Midgley. (2013). Measurement of molecular motion in organic semiconductors by thermal diffuse electron scattering. Nature Materials, 12(11): 1045-49. https://doi.org/10.1038/nmat3710. DOI: https://doi.org/10.1038/nmat3710
Fadeel, Bengt, Cyrill Bussy, Sonia Merino et al. (2018). Safety assessment of graphene-based materials: focus on human health and the environment. ACS Nano, 12(11): 10582-620. https://doi.org/10.1021/acsnano.8b04758. DOI: https://doi.org/10.1021/acsnano.8b04758
Geim, Andre K. and Irina V. Grigorieva. (2013). Van der Waals heterostructures. Nature, 499(7459): 419-25. https://doi.org/10.1038/nature12385. DOI: https://doi.org/10.1038/nature12385
Lammel, Tobias, Perrine Boisseaux, M. Luisa Fernández-Cruz and José M. Navas. (2013). Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human HepG2 cell line. Particle and Fibre Toxicology, 10(1): 27. https://doi.org/10.1186/1743-8977-10-27. DOI: https://doi.org/10.1186/1743-8977-10-27
Lautenberg, Frank R. (2016). U.S. Congress. Toxic Substances Control Act, 15 U.S. Code § 2601-2697 (1976). Chemical Safety for the 21st Century Act.
Li, Hui, Junhao Wu, Zongyou Yin and Hua Zhang. (2014a). Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. Accounts of Chemical Research, 47(4): 1067-75. https://doi.org/10.1021/ar4002312. DOI: https://doi.org/10.1021/ar4002312
Li, Likai, Yijun Yu, Guo Jun Ye et al. (2014b). Black phosphorus field-effect transistors. Nature Nanotechnology, 9(5): 372-77. https://doi.org/10.1038/nnano.2014.35. DOI: https://doi.org/10.1038/nnano.2014.35
Liu, Zhuang, Joshua T. Robinson, Xiao Sun and Hongjie Dai. (2008). PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society, 130(33): 10876-77. https://doi.org/10.1021/ja803688x. DOI: https://doi.org/10.1021/ja803688x
Longhin, Eleonora Marta, Ivan Rios-Mondragon, Espen Mariussen et al. (2024). Hazard assessment of nanomaterials: how to meet the requirements for (next generation) risk assessment. Particle and Fibre Toxicology, 21(1): 54. https://doi.org/10.1186/s12989-024-00615-4. DOI: https://doi.org/10.1186/s12989-024-00615-4
Mak, Kin Fai, Changgu Lee, James Hone, Jie Shan and Tony F. Heinz. (2010). Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 105(13): 136805. https://doi.org/10.1103/PhysRevLett.105.136805. DOI: https://doi.org/10.1103/PhysRevLett.105.136805
Naguib, Michael, Murat Kurtoglu, Volker Presser et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37): 4248-53. https://doi.org/10.1002/adma.201102306. DOI: https://doi.org/10.1002/adma.201102306
Novoselov, K. S., A. K. Geim, S. V. Morozov et al. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696): 666-69. https://doi.org/10.1126/science.1102896. DOI: https://doi.org/10.1126/science.1102896
Novoselov, K. S., A. Mishchenko, A. Carvalho and A. H. Castro Neto. (2016). 2D materials and Van der Waals heterostructures. Science, 353(6298): aac9439. https://doi.org/10.1126/science.aac9439. DOI: https://doi.org/10.1126/science.aac9439
OECD. (1981). OECD Council decision of 12 May 1981 concerning the mutual acceptance of data in the assessment of chemicals (C(81)30/Final). Organisation for Economic Co-Operation and Development (OECD). https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0194.
OECD. (2012). Guidance on sample preparation and dosimetry for the safety testing of manufactured nanomaterials. OECD Series on the safety of manufactured nanomaterials, ENV/JM/MONO(2012)40.Organisation for Economic Co-Operation and Development (OECD). 36. DOI: https://doi.org/10.1787/ed430e1d-en
OECD. (2016a). Developments on the safety of manufactured nanomaterials: 2013. Series on the safety of manufactured nanomaterials ENV/JM/MONO(2016)59. OECD Publishing. 59.
OECD. (2016b). Grouping and read-across for the hazard assessment of manufactured nanomaterials. Series on the safety of manufactured nanomaterials. OECD Publishing 80. https://www.oecd.org/chemicalsafety/nanosafety/publications-series-safety-manufactured-nanomaterials.htm.
Oomen, Agnes G., Eric A. J. Bleeker et al. (2015). Grouping and read-across approaches for risk assessment of nanomaterials. Enviromental Research and Public Health, 12(10). https://doi.org/10.3390/ijerph121013415. DOI: https://doi.org/10.3390/ijerph121013415
Ou, Lingling, Bin Song, Huimin Liang et al. (2016). Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Particle and Fibre Toxicology, 13(1): 57. https://doi.org/10.1186/s12989-016-0168-y. DOI: https://doi.org/10.1186/s12989-016-0168-y
Perala, Ramaswamy Sandeep, Narendhar Chandrasekar, Ramachandran Balaji, Pinky Steffi Alexander, Nik Zulkarnine Nik Humaidi and Michael Taeyoung Hwang. (2024). A comprehensive review on graphene-based materials: from synthesis to contemporary sensor applications. Materials Science and Engineering: R: Reports, 159(June): 100805. https://doi.org/10.1016/j.mser.2024.100805. DOI: https://doi.org/10.1016/j.mser.2024.100805
Rasmussen, Kirsten, Hubert Rauscher, Peter Kearns, Mar González and Juan Riego Sintes. (2019). Developing OECD test guidelines for regulatory testing of nanomaterials to ensure mutual acceptance of test data. Regulatory Toxicology and Pharmacology, 104(June): 74-83. https://doi.org/10.1016/j.yrtph.2019.02.008. DOI: https://doi.org/10.1016/j.yrtph.2019.02.008
Regulation (EC) No 1907/2006. (2006). European Parliament and Council of the European Union.
Regulation (EC) No 1907/2006 of 18 December 2006 Concerning the registration, evaluation, authorisation and restriction of chemicals (REACH). Official Journal of the European Union, 396: 1-849.
Saraswat, Vivek, Adil Mushtaq and Sanjay Saxena. (2021). Toxicity and Immunological response of Ti₃C₂ MXene nanosheets in vitro and in vivo. Journal of Hazardous Materials, 420: 126621. https://doi.org/10.1016/j.jhazmat.2021.126621. DOI: https://doi.org/10.1016/j.jhazmat.2021.126621
Seabra, Aline B., Amanda J. Paula, Renata de Lima et al. (2014). Nanotoxicity of graphene and graphene oxide. Chemical Research in Toxicology, 27(2): 159-68. https://doi.org/10.1021/tx400385x. DOI: https://doi.org/10.1021/tx400385x
Sun, Zhen, Hao Xie, Shao Tang et al. (2015). Black phosphorus nanostructures: recent advances in fabrication and biomedical applications. Chemical Society Reviews, 44(24): 8848-59. https://doi.org/10.1039/C5CS00514H.
Tao, Liang, Eugenio Cinquanta, Daniele Chiappe et al. (2015). Silicene field-effect transistors operating at room temperature. Nature Nanotechnology, 10(3): 227-31. https://doi.org/10.1038/nnano.2014.325. DOI: https://doi.org/10.1038/nnano.2014.325
Teo, Wei Zhe, Elaine L. K. Chng, Zdenek Sofer and Martin Pumera. (2014). Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS₂, WS₂, and WSe₂) is lower than that of graphene and its analogues. Chemistry — A European Journal, 20(31): 9627-32. https://doi.org/10.1002/chem.201402680. DOI: https://doi.org/10.1002/chem.201402680
The Graphene Council. (2019). Graphene classification framework. https://www.thegraphenecouncil.org.
Voiry, Damien, Jian Yang and Manish Chhowalla. (2016). Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Advanced Materials, 28(29): 6197-206. https://doi.org/10.1002/adma.201600914. DOI: https://doi.org/10.1002/adma.201505597
Wick, Peter, Annelies E. Louw-Gaume, Melanie Kucki et al. (2014). Classification framework for graphene-based materials. Angewandte Chemie International Edition, 53(30): 7714-18. https://doi.org/10.1002/anie.201403335. DOI: https://doi.org/10.1002/anie.201403335
Yang, Kai, Huan Gong, Xiaoyan Shi, Jia Wan, Yuxiao Zhang and Zhuang Liu. (2013). In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials, 34(11): 2787-95. https://doi.org/10.1016/j.biomaterials.2012.12.039. DOI: https://doi.org/10.1016/j.biomaterials.2013.01.001
Zhi, Chunyi, Yoshio Bando, Chengchun Tang et al. (2010). Boronnitride nanotubes. Materials Science and Engineering: R: Reports, 70(3-6): 92-111. https://doi.org/10.1016/j.mser.2010.06.015. DOI: https://doi.org/10.1016/j.mser.2010.06.004