Sílices mesoporosas: del mundo inorgánico a la entrega de fármacos Mesoporous silica: from the inorganic world to drug delivery

Conteúdo do artigo principal

Mariana Giselle Flores Cruz
https://orcid.org/0009-0004-8525-6976
Luz María López Marín
https://orcid.org/0000-0002-7503-6169

Resumo

Uno de los principales retos en la medicina actual es la entrega de medicamentos a través de sistemas inteligentes, área donde la nanotecnología tiene un impacto clave, dada su capacidad para producir materiales conmensurables con las estructuras de nuestras células y tejidos. Diversos sistemas nanoparticulados han sido propuestos para la liberación de fármacos, y uno de los más prometedores es el uso de la sílice mesoporosa. La sílice es un material inorgánico de bajo costo, el cual puede ser sintetizado a través de metodologías sencillas sin requerir infraestructura sofisticada, y dando lugar a estructuras muy versátiles en tamaño y porosidad, compatibles con el encapsulamiento de fármacos de muy distinta naturaleza, incluyendo biomacromoléculas, tales como proteínas y ácidos nucleicos. En este artículo, presentamos una descripción de las sílices mesoporosas como vectores para la liberación de fármacos, resaltando su potencial para la entrega de biomacromoléculas. Se presentan las estrategias más comunes para la modificación de su química superficial y para su caracterización. Por último, discutimos los estudios más recientes relacionados con su biocompatibilidad, biodegradabilidad y uso en humanos.

Downloads

Não há dados estatísticos.

Detalhes do artigo

Como Citar
Flores Cruz, M. G., & López Marín, L. M. (2025). Sílices mesoporosas: del mundo inorgánico a la entrega de fármacos: Mesoporous silica: from the inorganic world to drug delivery. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 18(35), e69856. https://doi.org/10.22201/ceiich.24485691e.2025.35.69856
Seção
Artigos de revisão
Biografia do Autor

Luz María López Marín, Universidad Nacional Autónoma de México, Centro de Física Aplicada y Tecnología Avanzada.

Química Farmacéutica Bióloga por la Universidad Nacional Autónoma de México. Realizó estudios de maestría en Biotecnología-Microbiología y de doctorado en Bioquímica en la Universidad Paul Sabatier de Toulouse, Francia. Labora en la Universidad Nacional Autónoma de México desde 1994. Actualmente es investigadora titular "B" en el Departamento de Nanotecnología del Centro de Física Aplicada y Tecnología Avanzada.

Referências

Abbasi, Fariba, Mohammad Reza Samaei, Hassan Hashemi, Amir Savardashtaki, Abooalfazl Azhdarpoor, Mohammad Javad Fallahi, Mahrokh Jalili y Sylvain Billet. (2021). The toxicity of SiO2 NPs on cell proliferation and cellular uptake of human lung fibroblastic cell line during the variation of calcination temperature and its modeling by artificial neural network. Journal of Environmental Health Science and Engineering, 19(1): 985-95. https://doi.org/10.1007/s40201-021-00663-4.

Ascic, Ervin, Fritiof Åkerström, Malavika Sreekumar Nair, André Rosa, Ilia Kurochkin, Olga Zimmermannova, Xavier Catena et al. (2024). In vivo dendritic cell reprogramming for cancer immunotherapy. Science, 386(6719): eadn9083. https://doi.org/10.1126/science.adn9083.

Barguilla, Irene, Vicente Candela-Noguera, Patrick Oliver, Balasubramanyam Annangi, Paula Díez, Elena Aznar, Ramón Martínez-Máñez, Ricard Marcos, Alba Hernández y María Dolores Marcos. (2023). Toxicological profiling and long-term effects of bare, PEGylated- and galacto-oligosaccharide-functionalized mesoporous silica nanoparticles. International Journal of Molecular Sciences, 24(22): 16158. https://doi.org/10.3390/ijms242216158.

Benezra, Miriam, Oula Penate-Medina, Pat B. Zanzonico, David Schaer, Hooisweng Ow, Andrew Burns, Elisa DeStanchina et al. (2011). Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. Journal of Clinical Investigation, 121(7): 2768-80. https://doi.org/10.1172/JCI45600.

Brinker, C. Jeffrey y George W. Scherer. 1990. Sol-gel science: the physics and chemistry of sol-gel processing. Boston: Academic Press.

Cabellos, Joan, Irene Gimeno-Benito, Julia Catalán, Hanna K. Lindberg, Gerard Vales, Elisabet Fernández-Rosas, Radu Ghemis et al. (2020). Short-term oral administration of non-porous and mesoporous silica did not induce local or systemic toxicity in mice. Nanotoxicology, 14(10): 1324-41. https://doi.org/10.1080/17435390.2020.1818325.

Carrasco, Giovana, Luz M. López-Marín, Francisco Fernández, Pedro Salas, Achim M. Loske y Blanca E. Millán-Chiu. (2016). Biomimetic coat enables the use of sonoporation to assist delivery of silica nanoparticle-cargoes into human cells. Biointerphases, 11(4): 04B303. https://doi.org/10.1116/1.4965704.

Chen, Yu, Hangrong Chen y Jianlin Shi. (2013). In vivo bio‐safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Advanced Materials, 25(23): 3144-76. https://doi.org/10.1002/adma.201205292.

Clogston, Jeffrey D., Rachael M. Crist, Marina A. Dobrovolskaia y Stephan T. Stern (eds.) (2024). Characterization of nanoparticles intended for drug delivery. Vol. 2789. Methods in molecular biology. Nueva York, N.Y.: Springer US. https://doi.org/10.1007/978-1-0716-3786-9.

Croissant, Jonas G., Kimberly S. Butler, Jeffrey I. Zink y C. Jeffrey Brinker. (2020). Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nature Reviews Materials, 5(12): 886-909. https://doi.org/10.1038/s41578-020-0230-0.

Dasgupta, Debatrayee, Manita Das, Sonal Thakore, Anjali Patel, Sunny Kumar y Sriram Seshadri. (2022). Development of a controlled sustainable anticancer drug delivery nanosystem comprising doxorubicin and functionalized MCM-48. Journal of Drug Delivery Science and Technology, 72(junio):103419. https://doi.org/10.1016/j.jddst.2022.103419.

Ebrahimi, Sasha B. y Devleena Samanta. (2023). Engineering protein-based therapeutics through structural and chemical design. Nature Communications, 14(1): 2411. https://doi.org/10.1038/s41467-023-38039-x.

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Maged Younes, Peter Aggett, Fernando Aguilar, Riccardo Crebelli, Birgit Dusemund, Metka Filipič et al. (2018). Re‐evaluation of silicon dioxide (E 551) as a food additive. EFSA Journal, 16(1). https://doi.org/10.2903/j.efsa.2018.5088.

Garrido-Cano, Iris, Vicente Candela-Noguera, Guadalupe Herrera, Juan Miguel Cejalvo, Ana Lluch, M. Dolores Marcos, Félix Sancenon, Pilar Eroles y Ramón Martínez-Máñez. (2021). Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 310(enero): 110593. https://doi.org/10.1016/j.micromeso.2020.110593.

Ghosh, Shatadal, Sayanta Dutta, Abhijit Sarkar, Mousumi Kundu y Parames C. Sil. (2021). Targeted delivery of curcumin in breast cancer cells via hyaluronic acid modified mesoporous silica nanoparticle to enhance anticancer efficiency. Colloids and Surfaces B: Biointerfaces, 197(enero): 111404. https://doi.org/10.1016/j.colsurfb.2020.111404.

Ha, Chang-Sik y Sung Soo Park. (2019). Periodic mesoporous organosilicas: preparation, properties and applications. (Springer Series in Materials Science, 281). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-2959-3.

Hagman, Emilia, Amira Elimam, Natalia Kupferschmidt, Kerstin Ekbom, Stephan Rössner, Muhammad Naeem Iqbal, Eric Johnston, Maria Lindgren, Tore Bengtsson y Pernilla Danielsson. (2020). Oral intake of mesoporous silica is safe and well tolerated in male humans. Hanspeter Nägeli (ed.). PLOS ONE, 15(10): e0240030. https://doi.org/10.1371/journal.pone.0240030.

Heidegger, Simon, Dorothée Gößl, Alexandra Schmidt, Stefan Niedermayer, Christian Argyo, Stefan Endres, Thomas Bein y Carole Bourquin. (2016). Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale, 8(2): 938-48. https://doi.org/10.1039/C5NR06122A.

Hornung, Veit, Franz Bauernfeind, Annett Halle, Eivind O. Samstad, Hajime Kono, Kenneth L. Rock, Katherine A. Fitzgerald y Eicke Latz. (2008). Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology, 9(8): 847-56. https://doi.org/10.1038/ni.1631.

Hosseinpour, Sepanta, Laurence J. Walsh y Chun Xu. (2020). Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective. Journal of Materials Chemistry B, 8(43): 9863-76. https://doi.org/10.1039/D0TB01868F.

Huang, Po-Ssu, Scott E. Boyken y David Baker. (2016). The coming of age of de novo protein design. Nature, 537(7620): 320-27. https://doi.org/10.1038/nature19946.

Huang, Rui, Yi-Wen Shen, Ying-Yun Guan, Yi-Xin Jiang, Ye Wu, Khalid Rahman, Li-Jun Zhang, Hai-Jun Liu y Xin Luan. (2020). Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology. Acta Biomaterialia, 116(octubre):1-15. https://doi.org/10.1016/j.actbio.2020.09.009.

Huang, Xinglu, Linlin Li, Tianlong Liu, Nanjing Hao, Huiyu Liu, Dong Chen y Fangqiong Tang. (2011). The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano, 5(7): 5390-99. https://doi.org/10.1021/nn200365a.

Huang, Xinyue, Neil P. Young y Helen E. Townley. (2014). Characterization and comparison of mesoporous silica particles for optimized drug delivery. Nanomaterials and Nanotechnology, 4(enero): 2. https://doi.org/10.5772/58290.

Janjua, Taskeen Iqbal, Yuxue Cao, Freddy Kleitz, Mika Linden, Chengzhong Yu y Amirali Popat. (2023). Silica nanoparticles: a review of their safety and current strategies to overcome biological barriers. Advanced Drug Delivery Reviews, 203(diciembre): 115115. https://doi.org/10.1016/j.addr.2023.115115.

Kachanov, Artyom, Anastasiya Kostyusheva, Sergey Brezgin, Ivan Karandashov, Natalia Ponomareva, Andrey Tikhonov, Alexander Lukashev et al. (2024). The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Medicinal Research Reviews, 44(5): 2112-93. https://doi.org/10.1002/med.22036.

Kankala, Ranjith Kumar, Ya‐Hui Han, Jongbeom Na, Chia‐Hung Lee, Ziqi Sun, Shi‐Bin Wang, Tatsuo Kimura et al. (2020). Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Advanced Materials, 32(23): 1907035. https://doi.org/10.1002/adma.201907035.

Kirla, Haritha, David J. Henry, Shirley Jansen, Peter L. Thompson y Juliana Hamzah. (2023). Use of silica nanoparticles for drug delivery in cardiovascular disease. Clinical Therapeutics, 45(11): 1060-68. https://doi.org/10.1016/j.clinthera.2023.08.017.

Kobayashi, Takeshi, Dilini Singappuli-Arachchige, Zhuoran Wang, Igor I. Slowing y Marek Pruski. (2017). Spatial distribution of organic functional groups supported on mesoporous silica nanoparticles: a study by conventional and DNP-enhanced29 Si solid-state NMR. Physical Chemistry Chemical Physics, 19(3): 1781-89. https://doi.org/10.1039/C6CP07642D.

Kortesuo, Pirjo, Manja Ahola, Minna Kangas, Tiina Leino, Sirpa Laakso, Lauri Vuorilehto, Antti Yli-Urpo, Juha Kiesvaara y Martti Marvola. (2001). Alkyl-substituted silica gel as a carrier in the controlled release of dexmedetomidine. Journal of Controlled Release, 76(3): 227-38. https://doi.org/10.1016/S0168-3659(01)00428-X.

Lamichhane, Tek N., Rahul S. Raiker y Steven M. Jay. (2015). Exogenous DNa loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Molecular Pharmaceutics, 12(10): 3650-57. https://doi.org/10.1021/acs.molpharmaceut.5b00364.

Leslie, Mitch. (2024). Edit the messenger. Science, 386(6720): 368-71. https://doi.org/10.1126/science.adu0428.

Leung, Chi Chiu, Ignatius Tak Sun Yu y Weihong Chen. (2012). Silicosis. The Lancet, 379(9830): 2008-18. https://doi.org/10.1016/S0140-6736(12)60235-9.

Leung, Kevin, Ida M. B. Nielsen y Louise J. Criscenti. (2009). Elucidating the bimodal acid−base behavior of the water-silica interface from first principles. Journal of the American Chemical Society, 131(51): 18358-65. https://doi.org/10.1021/ja906190t.

Li, Weijia, Jing Zhou y Yuyin Xu. (2015). Study of the in vitro cytotoxicity testing of medical devices. Biomedical Reports, 3(5): 617-20. https://doi.org/10.3892/br.2015.481.

Liu, Chang, Li Zhang, Hao Liu y Kun Cheng. (2017). Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. Journal of Controlled Release, 266(noviembre): 17-26. https://doi.org/10.1016/j.jconrel.2017.09.012.

Luhmer, M., J. B. d’Espinose, H. Hommel y A. P. Legrand. (1996). High-resolution 29Si solid-state NMR study of silicon functionality distribution on the surface of silicas. Magnetic Resonance Imaging, 14(7-8): 911-13. https://doi.org/10.1016/S0730-725X(96)00180-4.

Lundstrom, Kenneth. (2023). Viral vectors in gene therapy: where do we stand in 2023? Viruses, 15(3): 698. https://doi.org/10.3390/v15030698.

Magallanes-Puebla, Alejandro, Luz María López-Marín. (2023). Lipid bilayer-coated nanoparticles: mimetism for biomedical applications. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 16(31): 1e-15e. https://doi.org/10.22201/ceiich.24485691e.2023.31.69797.

Miao, Yuxi, Chen Fu, Zhaojin Yu, Lifeng Yu, Yu Tang y Minjie Wei. (2024). Current status and trends in small nucleic acid drug development: leading the future. Acta Pharmaceutica Sinica B, 14(9): 3802-17. https://doi.org/10.1016/j.apsb.2024.05.008.

N4 Pharma plc. (2024). N4 Pharma announces pre-clinical development of an oral RNA IBD treatment using Nuvec: N4 101. Diciembre 5. https://www.biospace.com/press-releases/n4-pharma-announces-pre-clinical-development-of-an-oral-rna-ibd-treatment-using-nuvec-n4-101.

Narayan, Reema, Shivaprasad Gadag, Rajeev J. Mudakavi, Sanjay Garg, Ashok M. Raichur, Yogendra Nayak, Suvarna G. Kini, Karkala Sreedhara Ranganath Pai y Usha Y. Nayak. (2021). Mesoporous silica nanoparticles capped with chitosan-glucuronic acid conjugate for pH-responsive targeted delivery of 5-fluorouracil. Journal of Drug Delivery Science and Technology, 63(junio): 102472. https://doi.org/10.1016/j.jddst.2021.102472.

Niroumand, Uranous, Negar Firouzabadi, Ghazal Goshtasbi, Bahareh Hassani, Parisa Ghasemiyeh y Soliman Mohammadi-Samani. (2023). The effect of size, morphology and surface properties of mesoporous silica nanoparticles on pharmacokinetic aspects and potential toxicity concerns. Frontiers in Materials, 10(junio): 1189463. https://doi.org/10.3389/fmats.2023.1189463.

Sattar, Rabia, Faisal Shahzad, Tehmeena Ishaq, Rubina Mukhtar y Asima Naz. (2022). Nano‐drug carriers: a potential approach towards drug delivery methods. Chemistry Select, 7(22): e202200884. https://doi.org/10.1002/slct.202200884.

Secord, Elizabeth y Nicholas L. Hartog. (2022). Review of treatment for adenosine deaminase deficiency (ADA) severe combined immunodeficiency (SCID). Therapeutics and Clinical Risk Management, 18(septiembre): 939-44. https://doi.org/10.2147/TCRM.S350762.

Shi, Zhi-Guo, Qing-Zhong Guo, Yi-Ting Liu, Yu-Xiu Xiao y Li Xu. (2011). Drug delivery devices based on macroporous silica spheres. Materials Chemistry and Physics, 126(3): 826-31. https://doi.org/10.1016/j.matchemphys.2010.12.035.

Siddiqui, Bazla, Asim.ur. Rehman, Ihsan-ul Haq, Amal A. Al-Dossary, Abdelhamid Elaissari y Naveed Ahmed. (2022). Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. International Journal of Pharmaceutics: X, 4(diciembre): 100116. https://doi.org/10.1016/j.ijpx.2022.100116.

Southey, Michelle W. Y. y Michael Brunavs. (2023). Introduction to small molecule drug discovery and preclinical development. Frontiers in Drug Discovery, 3(noviembre): 1314077. https://doi.org/10.3389/fddsv.2023.1314077.

Tan, Angel, Nasrin Ghouchi Eskandar, Shasha Rao y Clive A. Prestidge. (2014). First in man bioavailability and tolerability studies of a silica-lipid hybrid (lipoce- ramic) formulation: a phase I study with ibuprofen. Drug Delivery and Translational Research, 4(3): 212-21. https://doi.org/10.1007/s13346-013-0172-9.

Tang, Hanxia, Yuqing Xue, Zhiming Wu, Wenqian Zhu, Fengzhu Lv y Yihe Zhang. (2023). In situ synthesis of UV-responsive mesoporous SiO2 drug release systems using the associates of anionic drugs and cationic silica source as templates. Journal of Materials Research, 38(19): 4357-68. https://doi.org/10.1557/s43578-023-01148-w.

Tarn, Derrick, Carlee E. Ashley, Min Xue, Eric C. Carnes, Jeffrey I. Zink y C. Jeffrey Brinker. (2013). Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Accounts of Chemical Research, 46(3): 792-801. https://doi.org/10.1021/ar3000986.

Tella, Josephine Oluwagbemisola, Joseph Adeyemi Adekoya y Kolawole Oluseyi Ajanaku. (2022). Mesoporous silica nanocarriers as drug delivery systems for anti-tubercular agents: a review. Royal Society Open Science, 9(6): 220013. https://doi.org/10.1098/rsos.220013.

Theobald, Nigel. (2020). Emerging vaccine delivery systems for COVID-19. Drug Discovery Today, 25(9): 1556-58. https://doi.org/10.1016/j.drudis.2020.06.020.

Tsoi, Mandi, Trinh T. Do, Vicky Tang, Joseph A. Aguilera, Christopher C. Perry y Jamie R. Milligan. (2010). Characterization of condensed plasmid DNA models for studying the direct effect of ionizing radiation. Biophysical Chemistry, 147(3): 104-10. https://doi.org/10.1016/j.bpc.2009.12.006.

Tuyen Ho, Mong, Allie Barrett, Yixin Wang y Quanyin Hu. (2024). Bioinspired and biomimetic gene delivery systems. ACS Applied Bio Materials, 7(8): 4914-22. https://doi.org/10.1021/acsabm.3c00725.

Valdemar-Aguilar, C. M., R. Manisekaran, R. Avila, V. D. Compeán-García, R. Nava-Mendoza y L. M. López-Marín. (2020). Pathogen associated molecular pattern-decorated mesoporous silica – A colloidal model for studying bacterial-host cell interactions. Biointerphases, 15(4). https://doi.org/10.1116/6.0000168.

Von Baeckmann, Cornelia, Hanspeter Kählig, Mika Lindén y Freddy Kleitz. (2021). On the importance of the linking chemistry for the PEGylation of mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 589(mayo): 453-61. https://doi.org/10.1016/j.jcis.2020.12.004.

Wagner, Julia, Dorothée Gößl, Natasha Ustyanovska, Mengyao Xiong, Daniel Hauser, Olga Zhuzhgova, Sandra Hočevar et al. (2021). Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice. ACS Nano, 15(3): 4450-66. https://doi.org/10.1021/acsnano.0c08384.

Wu, Zhijian, Hyeonwoo Joo, Tai Gyu Lee y Kangtaek Lee. (2005). Controlled release of lidocaine hydrochloride from the surfactant-doped hybrid xerogels. Journal of Controlled Release, 104(3): 497-505. https://doi.org/10.1016/j.jconrel.2005.02.023.

Yin, Hao, Kevin J. Kauffman y Daniel G. Anderson. (2017). Delivery technologies for genome editing. Nature Reviews Drug Discovery, 16(6): 387-99. https://doi.org/10.1038/nrd.2016.280.

Zhang, Chengcheng, Hongyi Xie, Zhengyan Zhang, Bingjian Wen, Hua Cao, Yan Bai, Qishi Che, Jiao Guo y Zhengquan Su. (2022). Applications and biocompatibility of mesoporous silica nanocarriers in the field of medicine. Frontiers in Pharmacology, 13(enero): 829796. https://doi.org/10.3389/fphar.2022.829796.

Zhang, Li, Yujiao Li, Xing Liu, Xiaolu He, Jieyu Zhang, Jun Zhou, Youbei Qiao, Hong Wu, Fangfang Sun y Qing Zhou. (2024). Optimal development of apoptotic cells-mimicking liposomes targeting macrophages. Journal of Nanobiotechno- logy, 22(1): 501. https://doi.org/10.1186/s12951-024-02755-3.

Zhang, Ruoshi, Ming Hua, Hengliang Liu y Jing Li. (2021). How to design nanoporous silica nanoparticles in regulating drug delivery: surface modification and porous control. Materials Science and Engineering: B, 263(enero): 114835. https://doi.org/10.1016/j.mseb.2020.114835.