Cytotoxic effect of MgO and ZnO nanoparticles on oral cancer cell culture: nanocarriers for chemotherapeutic treatments Cytotoxic effect of MgO and ZnO nanoparticles on oral cancer cell culture: nanocarriers for chemotherapeutic treatments
Main Article Content
Abstract
Oral cancer, one of the main causes of mortality worldwide, is commonly treated with chemoradiotherapy. However, these therapies have limitations. Recent research focuses on the use of nanoparticles like MgO and ZnO to improve treatment and to evaluate the nanocytotoxic effect of MgO and ZnO nanoparticles on lymphoblastic-origin cancer cells. Lymphoblastic-origin primary culture cancer cells characterized by immunohistochemistry (IHC) were used, and nanocytotoxicity tests were performed using MgO and ZnO nanoparticles at concentrations ranging from 0 to 1.33 mg/mL. Cell viability was measured using the MTT assay by UV-Vis. Statistical analysis was carried out using the t-student test and ANOVA (p ≤ 0.05). Histopathological analyses confirmed the presence of oral lymphoblastic neoplastic lesions with specific characteristics, positive for cyclin D1 and negative for CD3. The results showed slight toxicity at the maximum dose for both nanoparticles (80% for MgO and 94% for ZnO) with statistically significant dose-dependent reduction (p < 0.05). MgO and ZnO nanoparticles have a slight cytotoxic effect on lymphoblastic cancer cells, so it is necessary to develop more effective chemotherapeutic treatments based on nanoparticles in combination with antitumor agents to confirm this hypothesis.
Downloads
Article Details
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
References
Alsahafi, E., Begg, K., Amelio, I., Raulf, N., Lucarelli, P., Sauter, T., Tavassoli, M. (2019). Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death and Disease, 10(8): 540. https://doi.org/10.1038/s41419-019-1769-9.
Behzadi, E., Sarsharzadeh, R., Nouri, M., Attar, F., Akhtari, K., Shahpasand, K., Falahati, M. (2018). Albumin binding and anticancer effect of magnesium oxide nanoparticles. International Journal of Nanomedicine, 14: 257-270. https://doi.org/10.2147/IJN.S186428.
Carneiro, B. A., El-Deiry, W. S. (2020). Targeting apoptosis in cancer therapy. Nature Reviews Clinical Oncology, 17(7): 395-417. https://doi.org/10.1038/s41571-020-0341-y.
Chia, S. L., Tay, C. Y., Setyawati, M. I., Leong, D. T. (2015). Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles. Small, 11(6): 702-712. https://doi.org/10.1002/smll.201401915.
DeLong, R. K., Comer, J., Mathew, E. N., Jaberi-Douraki, M. (2019). Comparative molecular immunological activity of physiological metal oxide nanoparticle and its anticancer peptide and RNA complexes. Nanomaterials, 9(12): 1670, Basilea, Suiza. https://doi.org/10.3390/nano9121670.
Deng, H., Yang, Y., Zuo, T., Fang, T., Xu, Y., Yang, J., Zhang, J., Shen, Q. (2021). Multifunctional ZnO@CuS nanoparticles cluster synergize chemotherapy and photothermal therapy for tumor metastasis. Nanomedicine: Nanotechnology, Biology and Medicine, 34: 102399. https://doi.org/10.1016/j.nano.2021.102399.
Franke, C. E., Czapar, A. E., Patel, R. B., Steinmetz, N. F. (2018). Tobacco mosaic virus-delivered cisplatin restores efficacy in platinum-resistant ovarian cancer cells. Molecular Pharmaceutics, 15(8): 2922-2931. https://doi.org/10.1021/acs.molpharmaceut.7b00466.
García-Contreias, R., Scougall-Vilchis, R. J., Contreras-Bulnes, R., Ando, Y., Kanda, Y., Hibino, Y., Nakajima, H., Sakagami, H. (2014). Effects of TiO2 nanoparticles on cytotoxic action of chemotherapeutic drugs against a human oral squamous cell carcinoma cell line. In Vivo, 28(2): 209-215.
Goldar, S., Khaniani, M. S., Derakhshan, S. M., Baradaran, B. (2015). Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pacific Journal of Cancer Prevention, 16(6): 2129-44. https://doi.org/10.7314/apjcp.2015.16.6.2129.
Hao, Q., Chen, J., Lu, H., Zhou, X. (2023). The ARTS of p53-dependent mitochondrial apoptosis. Journal of Molecular Cell Biology, 29: 14(10):mjac074. https://doi.org/10.1093/jmcb/mjac074.
Kashyap, D., Garg, V. K., Goel, N. (2021). Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Advances in Protein Chemistry and Structural Biology, 125: 73-120. https://doi.org/10.1016/bs.apcsb.2021.01.003.
Keefe, D. M., Schubert, M. M., Elting, L. S., Sonis, S. T., Epstein, J. B., Raber-Durlacher, J. E., Migliorati, C. A., McGuire, D. B., Hutchins, R. D., Peterson, D. E. (2007). Updated clinical practice guidelines for the prevention and treatment of mucositis. Cancer, 109(5): 820-831. https://doi.org/10.1002/cncr.22484.
Kiraz, Y., Adan, A., Kartal Yandim, M., Baran, Y. (2016). Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biology, 37(7): 8471-86. https://doi.org/10.1007/s13277-016-5035-9.
Kumar, R., Gokulakrishnan, N., Kumar, R., Krishna, V. M., Saravanan, A., Supriya, S., Somanathan, T. (2015). Can be a bimetal oxide ZnO-MgO nanoparticles anticancer drug carrier and deliver? Doxorubicin adsorption/release study. Journal of nanoscience and nanotechnology, 15(2): 1543-1553. https://doi.org/10.1166/jnn.2015.8915.
Lalla, R. V., Brennan, M. T., Schubert, M. M. (2011). Oral complications of cancer therapy. En Yagiela, J. A., Dowd, F. J., Johnson, B. S. et al. (eds.), Pharmacology and therapeutics for dentistry. 6a ed. Mosby Elsevier, 782-98.
Li, X., Li, R., Qian, X., Ding, Y., Tu, Y., Guo, R., Hu, Y., Jiang, X., Guo, W., Liu, B. (2008). Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. European Journal of Pharmaceutics and Biopharmaceutics, 70(3): 726-34. https://doi.org/10.1016/j.ejpb.2008.06.016.
Marei, H. E., Althani, A., Afifi, N. (2021). p53 signaling in cancer progression and therapy. Cancer Cell International, 21: 703. https://doi.org/10.1186/s12935-021-02396-8.
Mendoza-Martínez, N. L., Cadena-Galeana, A. D., Villanueva-Sánchez, F. G., Pérez-Cornejo, N., Avelar-Juárez, K. M., Ramos-Baena, J. D., Cruz-Monroy, E. A., Vázquez-Zúñiga, U., García-Contreras, R. (2023). Efficacy of antineoplastic nanocarriers on 3D oral cancer spheroids. In Vivo, 37(4): 1658-1665. https://doi.org/10.21873/invivo.13251.
Mohammadinejad, R., Moosavi, M. A., Tavakol, S., Vardar, D. Ö., Hosseini, A., Rahmati, M., Dini, L., Hussain, S., Mandegary, A., Klionsky, D. J. (2019). Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy, 15(1): 4-33. https://doi.org/10.1080/15548627.2018.1509171.
Rautureau, G. J., Day, C. L., Hinds, M. G. (2010). Intrinsically disordered proteins in bcl-2 regulated apoptosis. International Journal of Molecular Sciences, 11(4): 1808-24. https://doi.org/10.3390/ijms11041808.
Siegel, R. L., Miller, K. D., Wagle, N. S., Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1): 17-48. https://doi.org/10.3322/caac.21763.
Singh, T. A., Das, J., Sil, P. C. (2020). Zinc oxide nanoparticles: a comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Advances in Colloid and Interface Science, 286: 102317. https://doi.org/10.1016/j.cis.2020.102317.
Song, W., Jia, P., Zhang, T., Dou, K., Liu, L., Ren, Y., Liu, F., Xue, J., Hasanin, M. S., Qi, H. y Zhou, Q. (2022). Cell membrane-camouflaged inorganic nanoparticles for cancer therapy. Journal of Nanobiotechnology, 20(1): 289. https://doi.org/10.1186/s12951-022-01475-w.
Taneja, N., Alam, A., Patnaik, R. S., Taneja, T., Gupta, S., Sunil, M. K. (2021). Understanding nanotechnology in the treatment of oral cancer: a comprehensive review. Critical Reviews in Therapeutic Drug Carrier Systems, 38(6): 1-48. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2021036437.
Wong, R. S. (2011). Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research, 30: 87. https://doi.org/10.1186/1756-9966-30-87.
Xu, X., Lai, Y., Hua, Z. C. (2019). Apoptosis and apoptotic body: disease message and therapeutic target potentials. Bioscience Reports, 18(1): 39. https://doi.org/10.1042/BSR20180992.
Yang, L., Xu, J., Xie, Z., Song, F., Wang, X., Tang, R. (2021). Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian Journal of Pharmaceutical Sciences, 16(6): 762-771. https://doi.org/10.1016/j.ajps.2021.08.001.