Avances en el estudio toxicológico de los nanomateriales. Parte I

Contenido principal del artículo

María del Carmen González Castillo
https://orcid.org/0000-0002-9719-6526
Karla Oyuky Juárez Moreno
https://orcid.org/0000-0002-6171-8601

Resumen

Durante los últimos años, el estudio fino de las propiedades de los nanomateriales (NMs) ha transformado la forma de abordar la ciencia de los materiales. Esto ha impactado en todas las áreas del conocimiento, con aplicaciones importantes en biomedicina, energía y medio ambiente. Sin embargo, además de los beneficios conferidos por estos NMs, la comprensión de sus efectos adversos y sus mecanismos de acción en diversos organismos y ecosistemas ha llevado al surgimiento de un concepto emergente: la nanotoxicología. Esta disciplina busca descifrar las interacciones moleculares, celulares, tisulares y orgánicas entre un NM y las estructuras biológicas de los organismos. También estudia cómo estos afectan la fisiología de los organismos y el medio ambiente. 

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
González Castillo, M. del C., & Juárez Moreno, K. O. (2025). Avances en el estudio toxicológico de los nanomateriales. Parte I. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 19(36), e69906. https://doi.org/10.22201/ceiich.24485691e.2026.36.69906
Sección
Presentación

Citas

Ahmad, Anas, Mohammad Imran y Nisha Sharma. (2022). Precision nanotoxicology in drug development: current trends and challenges in safety and toxicity implications of customized multifunctional nanocarriers for drug-delivery applications. Pharmaceutics, 14(11): 2463. https://doi.org/10.3390/pharmaceutics14112463. DOI: https://doi.org/10.3390/pharmaceutics14112463

Bachler, Gerald, Natalie von Goetz y Konrad Hungerbühler. (2013). A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. International Journal of Nanomedicine, septiembre: 3365. https://doi.org/10.2147/IJN.S46624. DOI: https://doi.org/10.2147/IJN.S46624

Botifoll, Marc, Ivan Pinto-Huguet y Jordi Arbiol. (2022). Machine learning in electron microscopy for advanced nanocharacterization: current developments, available tools and future outlook. Nanoscale Horizons, 7(12): 1427-77. https://doi.org/10.1039/d2nh00377e. DOI: https://doi.org/10.1039/D2NH00377E

Burden, Natalie, Karin Aschberger, Qasim Chaudhry, Martin J. D. Clift, Paul Fowler, Helinor Johnston, Robert Landsiedel, Joanna Rowland, Vicki Stone y Shareen H. Doak. (2017). Aligning nanotoxicology with the 3Rs: what is needed to realise the short, medium and long-term opportunities? Regulatory Toxicology and Pharmacology, 91(diciembre): 257-66. https://doi.org/10.1016/j.yrtph.2017.10.021. DOI: https://doi.org/10.1016/j.yrtph.2017.10.021

Chávez-Hernández, Jorge Antonio, Aída Jimena Velarde-Salcedo, Gabriela Navarro-Tovar y Carmen Gonzalez. (2024). Safe Nanomaterials: from their use, application, and disposal to regulations. Nanoscale Advances, 6(6): 1583-1610. https://doi.org/10.1039/D3NA01097J. DOI: https://doi.org/10.1039/D3NA01097J

Deng, Wen, Haojie Shang, Yonghua Tong, Xiao Liu, Qiu Huang, Yu He, Jian Wu et al. (2024). The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. Journal of Nanobiotechnology, 22(1): 97. https://doi.org/10.1186/s12951-024-02297-8. DOI: https://doi.org/10.1186/s12951-024-02297-8

Farasat, Maryam, Firoozeh Niazvand y Layasadat Khorsandi. (2020). Zinc oxide nanoparticles induce necroptosis and inhibit autophagy in MCF-7 human breast cancer cells. Biologia, 75(1): 161-74. https://doi.org/10.2478/s11756-019-00325-9. DOI: https://doi.org/10.2478/s11756-019-00325-9

González, Carmen, Gabriela Navarro Tovar y Manuel Alejandro Ramírez Lee. (2018). Perfil fisiológico de los nanomateriales. Mundo Nano. Revista Interdisciplinaria en Nanociencia y Nanotecnología, 11(20): 27. https://doi.org/10.22201/ceiich.24485691e.2018.20.63062. DOI: https://doi.org/10.22201/ceiich.24485691e.2018.20.63062

Gupta, Priyamvada, Nilesh Rai, Ashish Verma y Vibhav Gautam. (2024). Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Medicinal Research Reviews, 44(1): 138-68. https://doi.org/https://doi.org/10.1002/med.21981. DOI: https://doi.org/10.1002/med.21981

Kou, Longfa, Yangzom D. Bhutia, Qing Yao, Zhonggui He, Jin Sun y Vadivel Ganapathy. (2018). Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Frontiers in Pharmacology, 9(enero): 1-16. https://doi.org/10.3389/fphar.2018.00027. DOI: https://doi.org/10.3389/fphar.2018.00027

Lahir, Y. K. (2016). Some aspects of interactions between nanomaterials and the cytoskeleton of eukaryotic cells. Advances in Clinical Toxicology, 1(2). https://doi.org/10.23880/act-16000111. DOI: https://doi.org/10.23880/ACT-16000111

López-Cano, Adrià, Alex Bach, Sergi López-Serrano, Virginia Aragon, Marta Blanch, Jose J. Pastor, Gemma Tedó, Sofia Morais, Elena Garcia-Fruitós y Anna Arís. (2022). Potential of Oral nanoparticles containing cytokines as intestinal mucosal immunostimulants in pigs: a pilot study. Animals, 12(9): 1075. https://doi.org/10.3390/ani12091075. DOI: https://doi.org/10.3390/ani12091075

Oberdörster, Günter, Andrew Maynard, Ken Donaldson, Vincent Castranova, Julie Fitzpatrick, Kevin Ausman, Janet Carter et al. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2(1): 8. https://doi.org/10.1186/1743-8977-2-8. DOI: https://doi.org/10.1186/1743-8977-2-8

OECD. (2022). Important issues on risk assessment of manufactured nanomaterials. OECD Environment, Health and Safety Publications. Series on the Safety of Manufactured Nanomaterials. ENV/CBM/MONO(2022)/3. DOI: https://doi.org/10.1787/2f6e7c61-en

Ortiz-Galvez, Luis Mauricio y Blanca Suárez-Merino. (2025). Engineered nanomaterials in the global regulatory arena and Mexico’s regulatory path. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 19(36): e69886. https://doi.org/10.22201/ceiich.24485691e.2026.36.69886. DOI: https://doi.org/10.22201/ceiich.24485691e.2026.36.69886

Patel, Kapil D., Zalike Keskin-Erdogan, Prasad Sawadkar, Nik Syahirah Aliaa Nik Sharifulden, Mark Robert Shannon, Madhumita Patel, Lady Barrios Silva et al. (2024). Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. Nanoscale Horizons, 9(10): 1630-82. https://doi.org/10.1039/D4NH00171K. DOI: https://doi.org/10.1039/D4NH00171K

Ramírez-Lee, Manuel A., Héctor Rosas-Hernández, Samuel Salazar-García, José Manuel Gutiérrez-Hernández, Ricardo Espinosa-Tanguma, Francisco J. González, Syed F. Ali y Carmen González. (2014). Silver Nanoparticles induce anti-proliferative effects on airway smooth muscle cells. Role of nitric oxide and muscarinic receptor signaling pathway. Toxicology Letters, 224(2): 246-56. https://doi.org/10.1016/j.toxlet.2013.10.027. DOI: https://doi.org/10.1016/j.toxlet.2013.10.027

Ramírez-Lee, Manuel Alejandro, Patricia Aguirre-Bañuelos, Pedro Pablo Martínez-Cuevas, Ricardo Espinosa-Tanguma, Erika Chi-Ahumada, Gabriel Alejandro Martínez-Castañón y Carmen Gonzalez. (2018). Evaluation of cardiovascular responses to silver nanoparticles (AgNPs) in spontaneously hypertensive rats. Nanomedicine: Nanotechnology, Biology and Medicine, 14(2): 385-95. https://doi.org/10.1016/j.nano.2017.11.013. DOI: https://doi.org/10.1016/j.nano.2017.11.013

Ramírez-Lee Manuel, Alejandro, Pedro Pablo Martínez-Cuevas, Héctor Rosas-Hernández, Cuauhtémoc Oros-Ovalle, Mariela Bravo-Sánchez, Gabriel Alejandro Martínez-Castañón y Carmen González. (2017). Evaluation of Vascular tone and cardiac contractility in response to silver nanoparticles, using Langendorff rat heart preparation. Nanomedicine: Nanotechnology, Biology and Medicine, 13(4): 1507-18. https://doi.org/10.1016/j.nano.2017.01.017. DOI: https://doi.org/10.1016/j.nano.2017.01.017

Salazar-García, Samuel, Ana Sonia Silva-Ramírez, Manuel A. Ramírez-Lee, Héctor Rosas-Hernández, Edgar Rangel-López, Claudia G. Castillo, Abel Santamaría, Gabriel A. Martínez-Castañón y Carmen González. (2015). Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs). Journal of Nanoparticle Research, 17(11): 1-13. https://doi.org/10.1007/s11051-015-3257-1. DOI: https://doi.org/10.1007/s11051-015-3257-1

Sims, Christopher M., Shannon K. Hanna, Daniel A. Heller, Christopher P. Horoszko, Monique E. Johnson, Antonio R. Montoro Bustos, Vytas Reipa, Kathryn R. Riley y Bryant C. Nelson. (2017). Redox-active nanomaterials for nanomedicine applications. Nanoscale, 9(40): 15226-51. https://doi.org/10.1039/C7NR05429G. DOI: https://doi.org/10.1039/C7NR05429G

Singh, Ajay Vikram, Peter Laux, Andreas Luch, Chaitanya Sudrik, Stefan Wiehr, Anna Maria Wild, Giulia Santomauro, Joachim Bill y Metin Sitti. (2019). Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicology Mechanisms and Methods. https://doi.org/10.1080/15376516.2019.1566425. DOI: https://doi.org/10.1080/15376516.2019.1566425

Singh, Ajay Vikram, Mansi Varma, Peter Laux, Sunil Choudhary, Ashok Kumar Datusalia, Neha Gupta, Andreas Luch, Anusha Gandhi, Pranav Kulkarni y Banashree Nath. (2023). Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Archives of Toxicology, 97(4): 963-79. https://doi.org/10.1007/s00204-023-03471-x. DOI: https://doi.org/10.1007/s00204-023-03471-x

Tinajero-Díaz, Ernesto, Daniela Salado-Leza, Carmen González, Moisés Martínez Velázquez, Zaira López, Jorge Bravo-Madrigal, Peter Knauth et al. (2021). Green metallic nanoparticles for cancer therapy: evaluation models and cancer applications. Pharmaceutics, 13(10): 1719. https://doi.org/10.3390/pharmaceutics13101719. DOI: https://doi.org/10.3390/pharmaceutics13101719

Verma, Suresh K., Aditya Nandi, Faizan Zarreen, Dibyangshee Singh, Adrija Sinha, Shaikh Sheeran, Jyotirmayee Sahoo y Sudakshya S. Lenka. (2023). Materials & design in silico nanotoxicology: the computational biology state of art for nanomaterial safety assessments. Materials & Design, 235(noviembre): 112452. https://doi.org/10.1016/j.matdes.2023.112452. DOI: https://doi.org/10.1016/j.matdes.2023.112452

Werengowska-Ciećwierz, Karolina, Marek Wiśniewski, Artur P. Terzyk y Sylwester Furmaniak. (2015). The chemistry of bioconjugation in nanoparticles-based drug delivery system. Advances in Condensed Matter Physics, 2015: 1-27. https://doi.org/10.1155/2015/198175. DOI: https://doi.org/10.1155/2015/198175

Wong, Belinda Shu Ee, Qidong Hu y Gyeong Hun Baeg. (2017). Epigenetic modulations in nanoparticle-mediated toxicity. Food and Chemical Toxicology, 109: 746-52. https://doi.org/https://doi.org/10.1016/j.fct.2017.07.006. DOI: https://doi.org/10.1016/j.fct.2017.07.006

Yin, Suhan, Jia Liu, Yiyuan Kang, Yuqing Lin, Dongjian Li y Longquan Shao. (2019). Interactions of nanomaterials with ion channels and related mechanisms. British Journal of Pharmacology, 176 (19): 3754-74. https://doi.org/10.1111/bph.14792. DOI: https://doi.org/10.1111/bph.14792

Zou, Zaijun, Han Li, Gang Xu, Yunxiang Hu, Weiguo Zhang y Kang Tian. (2023). Current knowledge and future perspectives of exosomes as nanocarriers in diagnosis and treatment of diseases. International Journal of Nanomedicine, agosto: 4751-78. https://doi.org/10.214/IJN.S417422. DOI: https://doi.org/10.2147/IJN.S417422

Artículos más leídos del mismo autor/a