Nanocompuestos poliméricos para adsorción de contaminantes orgánicos
Contenido principal del artículo
Resumen
La contaminación y escasez de agua se han consolidado como desafíos globales de creciente magnitud. Los efluentes presentes en reservas de agua contienen altas concentraciones de contaminantes tóxicos, destacándose entre ellos los compuestos orgánicos. La exposición a estas sustancias representa un riesgo latente tanto para la salud humana como para el ecosistema. Para abordar esta problemática, se ha propuesto la implementación de la nanotecnología en la creación de materiales con propiedades adsorbentes. Los nanocompuestos poliméricos son sistemas multifase en los cuales al menos una de las fases presenta dimensiones nanométricas y, cuando se logra una adecuada sinergia entre sus componentes, se pueden mejorar significativamente las propiedades del material. Asimismo, la adsorción se caracteriza por ser un método eficaz para la eliminación de contaminantes, ofreciendo múltiples ventajas operativas a un bajo costo. La incorporación de nanoarcillas, nanopartículas metálicas y nanopartículas a base de carbono en matrices poliméricas son ejemplos de materiales que demuestran altos niveles de adsorción de contaminantes orgánicos en medio acuoso. En esta revisión se abordan los avances más recientes en el desarrollo y aplicación de nanocompuestos poliméricos para la adsorción de colorantes, fármacos y toxinas en el tratamiento de aguas residuales.
Descargas
Detalles del artículo

Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
A. Ávila-Orta, C., González-Morones, P., Agüero- Valdez, D., González-Sánchez, A., G. Martínez-Colunga, J., M. Mata-Padilla, J. y J. Cruz-Delgado, V. (2019). Ultrasound- assisted melt extrusion of polymer nanocomposites. En Nanocomposites – Recent evolutions. IntechOpen. https://doi.org/10.5772/intechopen.80216.
Ahamad, T., Ruksana, Chaudhary, A. A., Naushad, M. y Alshehri, S. M. (2019). Fabrication of MnFe2O4 nanoparticles embedded chitosan-diphenylureaformaldehyde resin for the removal of tetracycline from aqueous solution. International Journal of Biological Macromolecules, 134: 180-188. https://doi.org/10.1016/j.ijbiomac.2019.04.204.
Ahamad, Z. y Nasar, A. (2024). Polypyrrole-decorated bentonite magnetic nanocomposite: a green approach for adsorption of anionic methyl orange and cationic crystal violet dyes from contaminated water. Environmental Research, 247: 118193. https://doi.org/10.1016/j.envres.2024.118193.
Ahmed, M. A., Abdelbar, N. M. y Mohamed, A. A. (2018). Molecular imprinted chitosan-TiO2 nanocomposite for the selective removal of Rose Bengal from wastewater. International Journal of Biological Macromolecules, 107: 1046-1053. https://doi.org/10.1016/j.ijbiomac.2017.09.082.
Ahmed, M. A., Ahmed, M. A. y Mohamed, A. A. (2023). Adsorptive removal of tetracycline antibiotic onto magnetic graphene oxide nanocomposite modified with polyvinylpyrroilidone. Reactive and Functional Polymers, 191: 105701. https://doi.org/10.1016/j.reactfunctpolym.2023.105701.
Akharame, M. O., Fatoki, O. S., Opeolu, B. O., Olorunfemi, D. I. y Oputu, O. U. (2018). Polymeric nanocomposites (PNCs) for wastewater remediation: an overview. Polymer-Plastics Technology and Engineering, 57(17): 1801-1827. https://doi.org/10.1080/03602559.2018.1434666.
Akpor, O., Otohinoyi, D. A., Olaolu, T. D. y Aderiye, J. B. I. (2014). Pollutants in wastewater effluents: impact and remediation processes. International Journal of Environmental Research and Earth Science, 3: 50-59. https://www.researchgate.net/publication/261834688.
Alharbi, O. M. L., Basheer, A. A., Khattab, R. A. y Ali, I. (2018). Health and environmental effects of persistent organic pollutants. Journal of Molecular Liquids, 263, 442-453. https://doi.org/10.1016/j.molliq.2018.05.029.
Ali, I., Asim, Mohd. y Khan, T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113: 170-183. https://doi.org/10.1016/j.jenvman.2012.08.028.
Alsukaibi, A. K. D. (2022). Various approaches for the detoxification of toxic dyes in wastewater. Processes, 10(10): 1968. MDPI. https://doi.org/10.3390/pr10101968.
Amin, K. A., Abdel Hameid, H. y Abd Elsttar, A. H. (2010). Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology, 48(10): 2994-2999. https://doi.org/10.1016/j.fct.2010.07.039.
Andrade-Guel, M., Ávila-Orta, C. A., Cadenas-Pliego, G., Cabello-Alvarado, C. J., Pérez-Alvarez, M., Reyes-Rodríguez, P., Inam, F., Cortés-Hernández, D. A. y Quiñones-Jurado, Z. V. (2020). Synthesis of nylon 6/modified carbon black nanocomposites for application in uric acid adsorption. Materials, 13(22): 5173. https://doi.org/10.3390/ma13225173.
Andrade-Guel, M., Cabello-Alvarado, C., Romero-Huitzil, R. L., Rodríguez-Fernández, O. S., Ávila-Orta, C. A., Cadenas-Pliego, G., Medellín-Banda, D. I., Gallardo-Vega, C. y Cepeda-Garza, J. (2021). Nanocomposite PLA/C20A nanoclay by ultrasound-assisted melt extrusion for adsorption of uremic toxins and methylene blue dye. Nanomaterials, 11(10): 2477. https://doi.org/10.3390/nano11102477.
Andrade-Guel, M., Reyes-Rodríguez, P. Y., Cabello-Alvarado, C. J., Cadenas-Pliego, G. y Ávila-Orta, C. A. (2022). Influence of modified carbon black on nylon 6 nonwoven fabric and performance as adsorbent material. Nanomaterials, 12(23). https://doi.org/10.3390/nano12234247.
Anuma, S., Mishra, P. y Bhat, B. R. (2021). Polypyrrole functionalized cobalt oxide graphene (COPYGO) nanocomposite for the efficient removal of dyes and heavy metal pollutants from aqueous effluents. Journal of Hazardous Materials, 416, 125929. https://doi.org/10.1016/j.jhazmat.2021.125929.
Armstrong, G. (2015). An introduction to polymer nanocomposites. European Journal of Physics, 36(6): 063001. https://doi.org/10.1088/0143-0807/36/6/063001.
Asses, N., Ayed, L., Hkiri, N. y Hamdi, M. (2018). Congo red decolorization and detoxification by Aspergillus niger: removal mechanisms and dye degradation pathway. BioMed Research International, 2018: 1-9.
https://doi.org/10.1155/2018/3049686.
Bal, G. y Thakur, A. (2021). Distinct approaches of removal of dyes from wastewater: a review. Materials Today: Proceedings, 50: 1575-1579. https://doi.org/10.1016/j.matpr.2021.09.119.
Bilińska, L. y Gmurek, M. (2021). Novel trends in AOPs for textile wastewater treatment. Enhanced dye by-products removal by catalytic and synergistic actions. Water Resources and Industry, 26: 100160. https://doi.org/10.1016/j.wri.2021.100160.
Cao, Y., Sheng, T., Yang, Z., Huang, D. y Sheng, L. (2021). Synthesis of molecular-imprinting polymer coated magnetic nanocomposites for selective capture and fast removal of environmental tricyclic analogs. Chemical Engineering Journal, 426: 128678. https://doi.org/10.1016/j.cej.2021.128678.
Chmielewski, M., Heimbürger, O., P. Stenvinkel y B. Lindholm. (2013). Uremic toxicity. Nutritional management of renal disease. 3a ed. 49-77. Academic Press is an imprint of Elsevier.
Chopra, S. y Kumar, D. (2020). Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon, 6(6): e04087. https://doi.org/10.1016/j.heliyon.2020.e04087.
Çınar, S., Kaynar, Ü. H., Aydemir, T., Çam Kaynar, S. y Ayvacıklı, M. (2017). An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/chitosan composite beads. International Journal of Biological Macromolecules, 96: 459-465. https://doi.org/10.1016/j.ijbiomac.2016.12.021.
Conagua. (2018). Estadísticas del agua en México 2018. www.gob.mx/conagua.
Crini, G. y Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1): 145-155. https://doi.org/10.1007/s10311-018-0785-9.
Darwish, M. S. A., Mostafa, M. H. y Al-Harbi, L. M. (2022). Polymeric nanocomposites for environmental and industrial applications. International Journal of Molecular Sciences, 23(3): 1023. https://doi.org/10.3390/ijms23031023.
Das, P., Nisa, S., Debnath, A. y Saha, B. (2022). Enhanced adsorptive removal of toxic anionic dye by novel magnetic polymeric nanocomposite: optimization of process parameters. Journal of Dispersion Science and Technology, 43(6): 880-895. https://doi.org/10.1080/01932691.2020.1845958.
Das, R. (2018). Carbon nanotubes for clean water. R. Das (ed.). Springer International Publishing. https://doi.org/10.1007/978-3-319-95603-9.
Dutta, S., Adhikary, S., Bhattacharya, S., Roy, D., Chatterjee, S., Chakraborty, A., Banerjee, D., Ganguly, A., Nanda, S. y Rajak, P. (2024). Contamination of textile dyes in aquatic environment: adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. Journal of Environmental Management, 353: 120103. https://doi.org/10.1016/j.jenvman.2024.120103.
Dutta, S., Gupta, B., Srivastava, S. K. y Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Materials Advances, 2(14): 4497-4531. https://doi.org/10.1039/D1MA00354B.
Dutta, S., Srivastava, S. K., Gupta, B. y Gupta, A. K. (2021). Hollow polyaniline microsphere/MnO 2 /Fe 3 O 4 nanocomposites in adsorptive removal of toxic dyes from contaminated water. ACS Applied Materials & Interfaces, 13(45): 54324-54338. https://doi.org/10.1021/acsami.1c15096.
Ekhlasi, A., Solouk, A., Haghbin Nazarpak, M., Pasbakhsh, P. y Shokrollahi, M. (2023). Electrospun polyacrylonitrile/halloysite nanofibrous membranes for creatinine removal from kidney failure patients. Applied Clay Science, 243: 107083. https://doi.org/10.1016/j.clay.2023.107083.
El-Shahawi, M. S., Hamza, A., Bashammakh, A. S. y Al-Saggaf, W. T. (2010). An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta, 80(5): 1587-1597. https://doi.org/10.1016/j.talanta.2009.09.055.
Fahmi, M. Z., Wathoniyyah, M., Khasanah, M., Rahardjo, Y., Wafiroh, S. y Abdulloh, A. (2018). Incorporation of graphene oxide in polyethersulfone mixed matrix membranes to enhance hemodialysis membrane performance. RSC Advances, 8(2): 931-937. https://doi.org/10.1039/C7RA11247E.
Fakhri-B., M.-S., Ghassemi-Barghi, N., Moradnia-Mehdikhanmahaleh, M., Raeis-Zadeh, S.-M.-M., Mousavi, T., Rezaee, R., Daghighi, M. y Abdollahi, M. (2024). Pharmaceutical wastewater toxicity: an ignored threat to the public health. Sustainable Environment, 10(1). https://doi.org/10.1080/27658511.2024.2322821.
Falconi, C. A., Junho, C. V. da C., Fogaça-Ruiz, F., Vernier, I. C. S., da Cunha, R. S., Stinghen, A. E. M. y Carneiro-Ramos, M. S. (2021). Uremic toxins: an alarming danger concerning the cardiovascular system. En Frontiers in Physiology, vol. 12. Frontiers Media S. A. https://doi.org/10.3389/fphys.2021.686249.
Farhan Hanafi, M. y Sapawe, N. (2020). A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Materials Today: Proceedings, 31: A141-A150. https://doi.org/10.1016/j.matpr.2021.01.258.
Félix-Cañedo, T. E., Durán-Álvarez, J. C. y Jiménez-Cisneros, B. (2013). The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Science of the Total Environment, (454-455): 109-118. https://doi.org/10.1016/j.scitotenv.2013.02.088.
Fernandes, F. H., Bustos-Obregon, E. y Salvadori, D. M. F. (2015). Disperse Red 1 (textile dye) induces cytotoxic and genotoxic effects in mouse germ cells. Reproductive Toxicology, 53: 75-81. https://doi.org/10.1016/j.reprotox.2015.04.002.
Fu, C.-C., Hsiao, Y.-S., Ke, J.-W., Syu, W.-L., Liu, T.-Y., Liu, S.-H. y Juang, R.-S. (2020). Adsorptive removal of p-cresol and creatinine from simulated serum using porous polyethersulfone mixed-matrix membranes. Separation and Purification Technology, 245: 116884. https://doi.org/10.1016/j.seppur.2020.116884.
Gavrilescu, C.-M., Paraschiv, C., Horjinec, P., Sotropa, D.-M. y Barbu, R.-M. (2018). The advantages and disadvantages of nanotechnology. Romanian Journal of Oral Rehabilitation, 10(2): 153-159.
Ghamkhari, A., Mohamadi, L., Kazemzadeh, S., Zafar, M. N., Rahdar, A. y Khaksefidi, R. (2020). Synthesis and characterization of poly(styrene-block-acrylic acid) diblock copolymer modified magnetite nanocomposite for efficient removal of penicillin G. Composites Part B: Engineering, 182: 107643. https://doi.org/10.1016/j.compositesb.2019.107643.
Gusain, R., Kumar, N. y Ray, S. S. (2020). Recent advances in carbon nanomaterial-based adsorbents for water purification. Coordination Chemistry Reviews, 405: 213111. https://doi.org/10.1016/j.ccr.2019.213111.
Hakami, A. A. H., Wabaidur, S. M., Ali Khan, M., Abdullah Alothman, Z., Rafatullah, Mohd. y Siddiqui, M. R. (2020). Development of ultra-performance liquid chromatography – Mass spectrometry method for simultaneous determination of three cationic dyes in environmental samples. Molecules, 25(19): 4564. https://doi.org/10.3390/molecules25194564.
Hanafi, M. F. y Sapawe, N. (2020). A review on the current techniques and technologies of organic pollutants removal from water/wastewater. Materials Today: Proceedings, 31: A158-A165. https://doi.org/10.1016/j.matpr.2021.01.265.
Hosseinzadeh, S., Hosseinzadeh, H., Pashaei, S. y Khodaparast, Z. (2018). Synthesis of magnetic functionalized MWCNT nanocomposite through surface RAFT co-polymerization of acrylic acid and N-isopropyl acrylamide for removal of cationic dyes from aqueous solutions. Ecotoxicology and Environmental Safety, 161: 34-44. https://doi.org/10.1016/j.ecoenv.2018.05.063.
Ismail, A. F., Abidin, M. N. Z., Mansur, S., Zailani, M. Z., Said, N., Raharjo, Y., Rosid, S. M., Othman, M. H. D., Goh, P. S. y Hasbullah, H. (2018). Hemodialysis membrane for blood purification process. En Membrane separation principles and applications: from material selection to mechanisms and industrial uses, 283-314. Elsevier. https://doi.org/10.1016/B978-0-12-812815-2.00009-0.
Jacob Kaleekkal, N. (2021). Heparin immobilized graphene oxide in polyetherimide membranes for hemodialysis with enhanced hemocompatibility and removal of uremic toxins. Journal of Membrane Science, 623: 119068. https://doi.org/10.1016/j.memsci.2021.119068.
Jones, O. A. H., Voulvoulis, N. y Lester, J. N. (2003). Perspectives potential impact of pharmaceuticals on environmental health. Bulletin of the World Health Organization, 81(10).
Kamari, S. y Shahbazi, A. (2020). Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES – Nanofiltration membrane matrix for salts, heavy metal ion and dye removal: long-term operation and reusability tests. Chemosphere, 243: 125282. https://doi.org/10.1016/j.chemosphere.2019.125282.
Karia, G. L., Christian, R. A. y Jariwala, N. D. (2024). Wastewater treatment: concepts and design approach. 3a ed. Dehli: Asoke K, Ghosh, PHI Learning Private Limited, Rimjhim House.
Kaur, K., Jindal, R. y Meenu. (2019). Self-assembled GO incorporated CMC and chitosan-based nanocomposites in the removal of cationic dyes. Carbohydrate Polymers, 225: 115245. https://doi.org/10.1016/j.carbpol.2019.115245.
Kesari, K. K., Soni, R., Jamal, Q. M. S., Tripathi, P., Lal, J. A., Jha, N. K., Siddiqui, M. H., Kumar, P., Tripathi, V. y Ruokolainen, J. (2021). Wastewater treatment and reuse: a review of its applications and health implications. Water, Air & Soil Pollution, 232(5): 208. https://doi.org/10.1007/s11270-021-05154-8.
Khan, H. K., Rehman, M. Y. A. y Malik, R. N. (2020). Fate and toxicity of pharmaceuticals in water environment: an insight on their occurrence in South Asia. Journal of Environmental Management, 271: 111030. https://doi.org/10.1016/j.jenvman.2020.111030.
Khan, S. A., Siddiqui, M. F. y Khan, T. A. (2020). Synthesis of poly(methacrylic acid)/montmorillonite hydrogel nanocomposite for efficient adsorption of amoxicillin and diclofenac from aqueous environment: kinetic, isotherm, reusability, and thermodynamic investigations. ACS Omega, 5(6): 2843-2855. https://doi.org/10.1021/acsomega.9b03617.
Kobylewski, S. y Jacobson, M. F. (2012). Toxicology of food dyes. International Journal of Occupational and Environmental Health, 18(3): 220-246. https://doi.org/10.1179/1077352512Z.00000000034.
Kulal, P. y Badalamoole, V. (2021). Evaluation of gum ghatti-g-poly(itaconic acid) magnetite nanocomposite as an adsorbent material for water purification. International Journal of Biological Macromolecules, 193: 2232-2242. https://doi.org/10.1016/j.ijbiomac.2021.11.055.
Liu, Q., Zhong, L.-B., Zhao, Q.-B., Frear, C. y Zheng, Y.-M. (2015). Synthesis of Fe 3 O 4 /polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline. ACS Applied Materials & Interfaces, 7(27): 14573-14583. https://doi.org/10.1021/acsami.5b04598.
Liu, Y., Nie, P. y Yu, F. (2021). Enhanced adsorption of sulfonamides by a novel carboxymethyl cellulose and chitosan-based composite with sulfonated graphene oxide. Bioresource Technology, 320: 124373. https://doi.org/10.1016/j.biortech.2020.124373.
Mahmoud, M. E., El-Ghanam, A. M., Mohamed, R. H. A. y Saad, S. R. (2020). Enhanced adsorption of levofloxacin and ceftriaxone antibiotics from water by assembled composite of nanotitanium oxide/chitosan/nano-bentonite. Materials Science and Engineering: C, 108: 110199. https://doi.org/10.1016/j.msec.2019.110199.
Marcelo, L. R., de Gois, J. S., da Silva, A. A. y Cesar, D. V. (2021). Synthesis of iron-based magnetic nanocomposites and applications in adsorption processes for water treatment: a review. Environmental Chemistry Letters, 19(2): 1229-1274. https://doi.org/10.1007/s10311-020-01134-2.
Mejía-López, A. C., Ramírez-García, J. J. y Solache-Ríos, M. (2022). Removal of penicillin from wastewater: a short review. Desalination and Water Treatment, 272: 144-155. https://doi.org/10.5004/dwt.2022.28815.
Mishra, D. (2021). Food colors and associated oxidative stress in chemical carcinogenesis. En Handbook of oxidative stress in cancer: mechanistic aspects, 1-14. Springer Singapore. https://doi.org/10.1007/978-981-15-4501-6_182-1.
Mohammadi, L., Rahdar, A., Khaksefidi, R., Ghamkhari, A., Fytianos, G. y Kyzas, G. Z. (2020). Polystyrene magnetic nanocomposites as antibiotic adsorbents. Polymers, 12(6): 1313. https://doi.org/10.3390/polym12061313.
Mohan, H., Singh Rajput, S., Jadhav, E. B., Sankhala, M. S., Sonone, S. S., Jadhav, S. V. y Kumar, R. (2021). Ecotoxicity, occurrence, and removal of pharmaceuticals and illicit drugs from aquatic systems. Biointerface Research in Applied Chemistry, 11(5): 12530-12546. https://doi.org/10.33263/BRIAC115.1253012546.
Nageeb, M. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater. En Organic pollutants - Monitoring, risk and treatment. InTech. https://doi.org/10.5772/54048.
Nava, L. F., Torres Bernardino, L. y Orozco, I. (2024). Crisis water management in Mexico. En The Palgrave Encyclopedia of sustainable resources and ecosystem resilience, 1-21. Springer International Publishing. https://doi.org/10.1007/978-3-030-67776-3_56-1.
Ofsthun, N. J., Karoor, S. y Suzuki, M. (2008). Hemodialysis membranes. En Advanced membrane technology and applications. https://doi.org/10.1002/9780470276280.ch19.
Omanović-Mikličanin, E., Badnjević, A., Kazlagić, A. y Hajlovac, M. (2020). Nanocomposites: a brief review. Health and Technology, 10(1): 51-59. https://doi.org/10.1007/s12553-019-00380-x.
Pawełczyk, A. (2013). Assessment of health risk associated with persistent organic pollutants in water. Environmental Monitoring and Assessment, 185(1): 497-508. https://doi.org/10.1007/s10661-012-2570-8.
Peng, N., Hu, D., Zeng, J., Li, Y., Liang, L. y Chang, C. (2016). Superabsorbent cellulose-clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustainable Chemistry & Engineering, 4(12): 7217-7224. https://doi.org/10.1021/acssuschemeng.6b02178.
Phoon, B. L., Ong, C. C., Mohamed Saheed, M. S., Show, P.-L., Chang, J.-S., Ling, T. C., Lam, S. S. y Juan, J. C. (2020). Conventional and emerging technologies for removal of antibiotics from wastewater. Journal of Hazardous Materials, 400: 122961. https://doi.org/10.1016/j.jhazmat.2020.122961.
Pooja, D., Kumar, P. y Singh, P. (2019). Sensors in water pollutants monitoring: role of material advanced functional materials and sensors. https://doi.org/10.1007/978-981-15-0671-0.
Qalyoubi, L., Al-Othman, A. y Al-Asheh, S. (2022). Removal of ciprofloxacin antibiotic pollutants from wastewater using nano-composite adsorptive membranes. Environmental Research, 215: 114182. https://doi.org/10.1016/j.envres.2022.114182.
Radu, E. R. y Voicu, S. I. (2022). Functionalized hemodialysis polysulfone membranes with improved hemocompatibility. Polymers, 14(6). MDPI. https://doi.org/10.3390/polym14061130.
Rienzie, R., Ramanayaka, S. y Adassooriya, N. M. (2019). Nanotechnology applications for the removal of environmental contaminants from pharmaceuticals and personal care products. En Pharmaceuticals and personal care products: waste management and treatment technology emerging contaminants and micro pollutants, 279-296. Elsevier. https://doi.org/10.1016/B978-0-12-816189-0.00012-3.
Rodríguez de Cossío, A. y Rodríguez Sánchez, R. (2011). Pruebas de laboratorio en atención primaria (II). SEMERGEN - Medicina de Familia, 37(3): 130-135. https://doi.org/10.1016/j.semerg.2010.12.003.
Roshanfekr Rad, L. y Anbia, M. (2021). Zeolite-based composites for the adsorption of toxic matters from water: a review. Journal of Environmental Chemical Engineering, 9(5): 106088. https://doi.org/10.1016/j.jece.2021.106088.
Rosner, M. H., Reis, T., Husain-Syed, F., Vanholder, R., Hutchison, C., Stenvinkel, P., Blankestijn, P. J., Cozzolino, M., Juillard, L., Kashani, K., Kaushik, M., Kawanishi, H., Massy, Z., Sirich, T. L., Zuo, L. y Ronco, C. (2021). Classification of uremic toxins and their role in kidney failure. Clinical Journal of the American Society of Nephrology, 16(12): 1918-1928. https://doi.org/10.2215/CJN.02660221.
Rostamian, M., Hosseini, H., Fakhri, V., Talouki, P. Y., Farahani, M., Gharehtzpeh, A. J., Goodarzi, V. y Su, C.-H. (2022). Introducing a bio sorbent for removal of methylene blue dye based on flexible poly(glycerol sebacate)/chitosan/graphene oxide ecofriendly nanocomposites. Chemosphere, 289: 133219. https://doi.org/10.1016/j.chemosphere.2021.133219.
Roy, M. y Saha, R. (2021). Dyes and their removal technologies from wastewater: a critical review. En Intelligent environmental data monitoring for pollution management, 127-160. Elsevier. https://doi.org/10.1016/B978-0-12-819671-7.00006-3.
Samuel, M. S., John. J, A., Ravikumar, M., Raizada, P., Wan Azelee, N. I., Selvarajan, E. y Selvasembian, R. (2023). Recent progress on the remediation of dyes in wastewater using cellulose-based adsorbents. Industrial Crops and Products, 206: 117590. https://doi.org/10.1016/j.indcrop.2023.117590.
Saravanan, A., Senthil Kumar, P., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P. R. y Reshma, B. (2021). Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere, 280. https://doi.org/10.1016/j.chemosphere.2021.130595.
Sarojini, G., Babu, S. V. y Rajasimman, M. (2022). Adsorptive potential of iron oxide based nanocomposite for the sequestration of Congo red from aqueous solution. Chemosphere, 287: 132371. https://doi.org/10.1016/j.chemosphere.2021.132371
Sarojini, G., Venkatesh Babu, S., Rajamohan, N. y Rajasimman, M. (2022). Performance evaluation of polymer-marine biomass based bionanocomposite for the adsorptive removal of malachite green from synthetic wastewater. Environmental Research, 204: 112132. https://doi.org/10.1016/j.envres.2021.112132.
Schaider, L. A., Rodgers, K. M. y Rudel, R. A. (2017). Review of organic wastewater compound concentrations and removal in onsite wastewater treatment systems. Environmental Science and Technology, 51(13): 7304-7317. American Chemical Society. https://doi.org/10.1021/acs.est.6b04778.
Senguttuvan, S., Janaki, V., Senthilkumar, P. y Kamala-Kannan, S. (2022). Polypyrrole/zeolite composite – A nanoadsorbent for reactive dyes removal from synthetic solution. Chemosphere, 287: 132164. https://doi.org/10.1016/j.chemosphere.2021.132164.
Shamsudin, M. S., Azha, S. F. y Ismail, S. (2022). A review of diclofenac occurrences, toxicology, and potential adsorption of clay-based materials with surfactant modifier. Journal of Environmental Chemical Engineering, 10(3): 107541. https://doi.org/10.1016/j.jece.2022.107541.
Shao, G., Zang, Y. y Hinds, B. J. (2019). TiO2 nanowires based system for urea photodecomposition and dialysate regeneration. ACS Applied Nano Materials, 2(10): 6116-6123. https://doi.org/10.1021/acsanm.9b00709.
Singh, A., Mittal, A. y Jangid, N. K. (2020). Toxicology of dyes, 50-69. https://doi.org/10.4018/978-1-7998-0311-9.ch003.
Singh, J., Yadav, P., Pal, A. K. y Mishra, V. (2020). Water pollutants: origin and status, 5-20. https://doi.org/10.1007/978-981-15-0671-0_2.
Soni, R., Chandra, D., Lourdes, S., Jaspal, M.-O. y Chauhan, S. (2023). Current status of fresh water microbiology. 1a ed. Springer Singapore. https://doi.org/10.1007/978-981-99-5018-8.
Sripriya, L., Vijayalakshmi, M., Sumathy, R. y Sharmila, J. (2014). The impact of textile dyes on the biochemistry and histology of liver, a freshwater fish, tilapia, Oreochromis mossambicus (PETERS.). International Journal of Pharma and Bio Sciences, 5: 271-298.
Sun, S., Jiang, T., Lin, Y., Song, J., Zheng, Y. y An, D. (2020). Characteristics of organic pollutants in source water and purification evaluations in drinking water treatment plants. Science of the Total Environment, 733: 139277. https://doi.org/10.1016/j.scitotenv.2020.139277.
Suyal, D. C. y Soni, R. (2021). Bioremediation of environmental pollutants: emerging trends and strategies. In Bioremediation of Environmental Pollutants: Emerging Trends and Strategies. Springer International Publishing. https://doi.org/10.1007/978-3-030-86169-8.
Thakur, A., Kumar, A. y Singh, A. (2024). Adsorptive removal of heavy metals, dyes, and pharmaceuticals: carbon-based nanomaterials in focus. Carbon, 217. https://doi.org/10.1016/j.carbon.2023.118621.
Tian, J., Xu, J., Zhu, F., Lu, T., Su, C. y Ouyang, G. (2013). Application of nanomaterials in sample preparation. Journal of Chromatography A, 1300: 2-16. https://doi.org/10.1016/j.chroma.2013.04.010.
Tyumina, E., Subbotina, M., Polygalov, M., Tyan, S. y Ivshina, I. (2023). Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1200108.
Wang, Y., He, L., Dang, G., Li, H. y Li, X. (2021). Polypyrrole-functionalized magnetic Bi2MoO6 nanocomposites as a fast, efficient and reusable adsorbent for removal of ketoprofen and indomethacin from aqueous solution. Journal of Colloid and Interface Science, 592: 51-65. https://doi.org/10.1016/j.jcis.2021.02.033.
Warner, A. J., Hathaway-Schrader, J. D., Lubker, R., Davies, C. y Novince, C. M. (2022). Tetracyclines and bone: unclear actions with potentially lasting effects. Bone, 159: 116377. https://doi.org/10.1016/j.bone.2022.116377.
Weerakoon, D., Bansal, B., Padhye, L. P., Rachmani, A., James Wright, L., Silyn Roberts, G. y Baroutian, S. (2023). A critical review on current urea removal technologies from water: an approach for pollution prevention and resource recovery. En Separation and purification technology, vol. 314. Elsevier B.V. https://doi.org/10.1016/j.seppur.2023.123652.
Yadav, V. B., Gadi, R. y Kalra, S. (2019). Clay based nanocomposites for removal of heavy metals from water: a review. Journal of Environmental Management, 232: 803-817. https://doi.org/10.1016/j.jenvman.2018.11.120.
Yaqoob, A. A., Parveen, T., Umar, K. y Mohamad Ibrahim, M. N. (2020). Role of nanomaterials in the treatment of wastewater: a review. Water, 12(2): 495. https://doi.org/10.3390/w12020495.
Zaied, B. K., Rashid, M., Nasrullah, M., Zularisam, A. W., Pant, D. y Singh, L. (2020). A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Science of the Total Environment, 726. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.138095.
Zailani, M. Z., Ismail, A. F., Goh, P. S., Abdul Kadir, S. H. S., Othman, M. H. D., Hasbullah, H., Abdullah, M. S., Ng, B. C., Kamal, F. y Mustafar, R. (2021). Immobilizing chitosan nanoparticles in polysulfone ultrafiltration hollow fibre membranes for improving uremic toxins removal. Journal of Environmental Chemical Engineering, 9(6): 106878. https://doi.org/10.1016/j.jece.2021.106878.
Zhu, Y., Fan, W., Zhou, T. y Li, X. (2019). Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms. Science of the Total Environment, 678: 253-266. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.04.416.