Implicaciones de los nanomateriales utilizados en la agricultura: una revisión de literatura de los beneficios y riesgos para la sustentabilidad

Contenido principal del artículo

Hermes Pérez Hernández
http://orcid.org/0000-0002-5883-066X
Fernando López-Valdez
http://orcid.org/0000-0003-2347-2054
Antonio Juárez-Maldonado
https://orcid.org/0000-0003-3061-2297
Alonso Méndez-López
https://orcid.org/0000-0002-4356-0409
Cesar Roberto Sarabia-Castillo
https://orcid.org/0000-0002-9387-4000
Selvia García-Mayagoitia
https://orcid.org/0000-0003-1066-4452
Andrés Patricio Torres-Gómez
http://orcid.org/0000-0002-3121-527X
Jessica Denisse Valle-García
https://orcid.org/0000-0001-9363-1327
Andrea Yakelín Pérez-Moreno
https://orcid.org/0000-0002-4584-8748

Resumen

Las propiedades mecánicas, químicas, térmicas, ópticas, eléctricas y biológicas de los nanomateriales y nanopartículas hacen posible su aplicación en áreas de la industria: medicina, cosmética, automotriz, higiene personal, electrónica, agrícola y ambiental, entre otras. Para el sector agrícola, desde hace más de dos décadas, la nanotecnología ha sido considerada como una tecnología de avanzada, las investigaciones sobre estos materiales han mostrado el potencial de materiales nanométricos como bioestimulantes del crecimiento, de las características morfológicas y bioquímicas de las plantas. Además, se pueden desarrollar nano productos para el control de plagas, enfermedades, arvenses, entre otros, con la acción combinada de los nanomateriales y los metabolitos de las plantas dando beneficios a favor de la agricultura. Con la información recopilada, se ha demostrado que se continúan investigando los efectos controversiales de la nanotecnología aplicada a la agricultura, pero, sin duda, en los próximos años, con la aparición de nuevos instrumentos, nuevas metodologías y el trabajo multidisciplinario, las futuras investigaciones mostrarán evidencia en la cadena trófica y posiblemente los efectos palpables en el cuerpo humano.

Detalles del artículo

Cómo citar
Hernández, H. P., López-Valdez, F., Juárez-Maldonado, A., Méndez-López, A., Sarabia-Castillo, C. R., García-Mayagoitia, S., … Pérez-Moreno, A. Y. (2024). Implicaciones de los nanomateriales utilizados en la agricultura: una revisión de literatura de los beneficios y riesgos para la sustentabilidad. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 17(32), 1e-50e. https://doi.org/10.22201/ceiich.24485691e.2024.32.69720 (Original work published 3 de abril de 2023)
Sección
Artículos de revisión

Citas

Abbas Q, Yousaf B, Ullah H, Ali MU, Ok YS, Rinklebe J. Environmental transformation and nano-toxicity of engineered nano-particles (ENPs) in aquatic and terrestrial organisms. Critical Reviews in Environmental Science and Technology. 2020;50(23):2523-81.
Abdel-Rahman FA, Monir GA, Hassan MS, Ahmed Y, Refaat MH, Ismail IA, El-Garhy HA. Exogenously applied chitosan and chitosan nanoparticles improved apple fruit resistance to blue mold, upregulated defense-related genes expression, and maintained fruit quality. Horticulturae. 2021;7(8):224-.
Abdulsada Z, Kibbee R, Schwertfeger D, Princz J, DeRosa M, Örmeci B. Fate and removal of silver nanoparticles during sludge conditioning and their impact on soil health after simulated land application. Water Research. 2021;206.
Acharya A, Pal PK. Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. Nano-Impact. 2020;19.
Adrees M, Khan ZS, Ali S, Hafeez M, Khalid S, Ur Rehman MZ, Hussain K, Chatha SAS, Rizwan M. Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere. 2020;238.
Agayeva NJ, Rzayev FH, Gasimov EK, Mamedov CA, Ahmadov IS, Sadigova NA, Khusro A, Al-Dhabi NA, Arasu MV. Exposure of rainbow trout (Oncorhynchus mykiss) to magnetite (Fe3O4) nanoparticles in simplified food chain: Study on ultrastructural characterization. Saudi Journal of Biological Sciences. 2020;27(12):3258-66.
Ahmed B, Ameen F, Rizvi A, Ali K, Sonbol H, Zaidi A, Khan MS, Musarrat J. Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO2, and Al2O3 toward beneficial soil bacteria. ACS omega. 2020;5(14):7861-76.
Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Saiful Islam ABM, Ong HC. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environmental Research. 2022;204.
Alabdallah NM, Alzahrani HS. The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi Journal of Biological Sciences. 2020;27:3132-7.
Ali S, Mehmood A, Khan N. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials. 2021;.
Alsaeedi A, El-Ramady H, Alshaal T, El-Garawani M, Elhawat N, Al-Otaibi A. Exogenous nanosilica improves germination and growth of cucumber by maintaining K+/Na+ ratio under elevated Na+ stress. Plant physiology and biochemistry. 2018;125:164-71.
Alvandi N, Assariha S, Esfandiari N, Jafari R. Off-on sensor based on concentration-dependent multicolor fluorescent carbon dots for detecting pesticides. Nano-Structures & Nano-Objects. 2021;26.
Amrane A, Mohan D, Nguyen TA, Assadi AAA, Yasin G. Nanomaterials for soil remediation. Micro and Nano Technologies Series. 2020;.
An J, Hu P, Li F, Wu H, Shen Y, White JC, Tian X, Li Z, Giraldo JP. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano. 2020;7(8):2214-28.
Aparna A, Sreehari H, Chandran A, Anjali KP, Alex AM, Anuvinda P, Gouthami GB, Pillai NP, Parvathy N, Sadanandan S, Appukuttan S. Ligand-protected nanoclusters and their role in agriculture, sensing and allied applications. Talanta. 2021;.
Arul V, Edison TNJI, Lee YR, Sethuraman MG. Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus. Journal of Photochemistry and Photobiology B: Biology. 2017;168:142-8.
Asgari F, Majd A, Jonoubi P, Najafi F. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant physiology and biochemistry. 2018;127:152-60.
Asghari F, Jahanshiri Z, Imani M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Nanobiomaterials in antimicrobial therapy. William Andrew Publishing; 2016.
Ashraf SA, Siddiqui AJ, Abd Elmoneim OE, Khan MI, Patel M, Alreshidi M, Moin A, Singh R, Snoussi M, Adnan M. Innovations in nano-science for the sustainable development of food and agriculture with implications on health and environment. Science of the Total Environment. 2021;.
Ayala MDCNA, Castillo FDH, Alcalá EIL, Pérez ASL, Canché CNA, García JR. Efecto biológico de nanopartículas cargadas con ácido indolacético microbiano en parámetros morfométricos de tomate. Revista Mexicana de Ciencias Agrícolas. 2020;11:507-1.
Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK. Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis. 2018;26(4):1201-14.
Asli B, Hasan S. Effect of zinc oxide nanoparticles on the trace element contents of soils. Chemistry and Ecology. 2018;34:713-26.
Bidi H, Fallah H, Niknejad Y, Tari DB. Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation. Plant physiology and biochemistry. 2021;163:348-57.
Bolade OP, Williams AB, Benson NU. Green synthesis of iron-based nanomaterials for environmental remediation: a review. Environ. Nanotechnol. Monit. Manag. 2020;13.
Borišev M, Borišev I, Župunski M, Arsenov D, Pajević S, Ćurčić Ž., Vasin J, Djordjevic A. Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles. PLoS One. 2016;11(11).
Brar KK, Magdouli S, Othmani A, Ghanei J, Narisetty V, Sindhu R, Binod P, Pugazhendhi A, Awasthi MK, Pandey A. Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. Environmental Research. 2021;.
Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and applied pharmacology. 2001;175(3):191-9.
Callaham MA, Stanturf JA. Soils and landscape restoration. Stanturf JA, Callaham MA, editores. Academic Press; 2021.
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano. 2020;14(3):2678-701.
Chaudhry N, Dwivedi S, Chaudhry V, Singh A, Saquib Q, Azam A, Musarrat J. Bio-inspired nanomaterials in agriculture and food: Current status, foreseen applications and challenges. Microbial pathogenesis. 2018;123:196-200.
Chausali N, Saxena J, Prasad R. Nanobiochar and biochar based nano-composites: advances and applications. Journal of Agriculture and Food Research. 2021;5.
Chen H. Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. Chemical Speciation & Bioavailability. 2018;30:123-34.
Chen WH, Huang JR. Contaminants of emerging concern in water and wastewater. Elsevier Inc.; 2020.
Cota-Sánchez G, Merlo-Sosa L, Ávalos-Ramírez A, Mendoza-González N. Nanomaterials in the environment. American Society of Civil Engineers (ASCE); 2015.
Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Science of the Total Environment. 2019;688:926-34.
Do Espirito Santo Pereira A, Caixeta Oliveira H, Fernandes Fraceto L, Santaella C. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials. 2021;11(2):267-.
Du W, Yang J, Peng Q, Liang X, Mao H. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc bio-fortification. Chemosphere. 2019;227:109-116.7.
El-Gazzar N, Ismail AM. The potential use of titanium, silver and selenium nanoparticles in controlling leaf blight of tomato caused by Alternaria alternata. Biocatalysis and Agricultural Biotechnology. 2020;27.
El-Saadony MT, Saad AM, Najjar AA, Alzahrani SO, Alkhatib FM, Shafi ME, Selem E, Desoky EM, , El-Tahan AM, S. E. E. Hassan MA. The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi Journal of Biological Sciences. 2021;28(8):4461-7.
Farouk S, Al-Amri SM. Exogenous zinc forms counteract NaCl-induced damage by regulating the antioxidant system, osmotic adjustment substances, and ions in canola (Brassica napus L. cv. Pactol) plants. Journal of Soil Science and Plant Nutrition. 2019;19(4):887-99.
Feichtmeier NS, Walther P, Leopold K. Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environmental science and pollution research. 2015;22(11):8549-58.
Fenu G, Francesca MM. DSS LANDS: a decision support system for agriculture in Sardinia. HighTech and Innovation Journal. 2020;1:129-35.
Foladori G, Bejarano F, Invernizzi N. Nanotecnología: gestión y reglamentación de riesgos para la salud y medio ambiente en América Latina y el Caribe. Trabalho, Educação e Saúde. 2013;11:145-67.
Foladori G. Occupational and environmental safety standards in nanotechnology: International Organization for Standardization, Latin America and Beyond. Economic and Labour Relations Review. 2017;28(4):538-54.
Gaviria-Arroyave MI, Cano JB, Peñuela GA. Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: a critical review. Talanta Open. 2020;.
González-García Y, Cárdenas-Álvarez C, Cadenas-Pliego G, Benavides-Mendoza A, Cabrera-de-la-Fuente M, Sandoval-Rangel A, Valdés-Reyna J, Juárez-Maldonado A. Effect of three nanoparticles (Se, Si and Cu) on the bioactive compounds of bell pepper fruits under saline stress. Plants. 2021;10(2):217-.
González‐García Y, González‐Moscoso M, Hernández‐Hernández H, Méndez‐López A, Juárez‐Maldonado A. Induction of stress tolerance in crops by applying nanomaterials. Nanotechnology in plant growth promotion and protection. Recent Advances and Impacts. 2021;:129-6.
Griffiths BS, Römbke J, Schmelz RM, Scheffczyk A, Faber JH, Bloem J, Stone D. Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators. 2016;69:213-2.
Grün AL, Scheid P, Hauröder B, Emmerling C, Manz W. Assessment of the effect of silver nanoparticles on the relevant soil protozoan genus Acanthamoeba. Journal of Plant Nutrition and Soil Science. 2017;180(5):602-13.
Gupta SD, Agarwal A, Pradhan S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicology and environmental safety. 2018;161:624-33.
Hayes KL, Mui J, Song B, Sani ES, Eisenman SW, Sheffield JB, Kim B. Effects, uptake, and translocation of aluminum oxide nanoparticles in lettuce: A comparison study to phytotoxic aluminum ions. Science of the Total Environment. 2020;719.
He H, Sun DW, Wu Z, Pu H, Wei Q. On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends in Food Science & Technology. 2021;119:243-56.
He X, Deng H, Hwang HM. The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis. 2019;27(1):1-21.
He Y, Xiao S, Dong T, Nie P. Gold nanoparticles with different particle sizes for the quantitative determination of chlorpyrifos residues in soil by SERS. International Journal of Molecular Sciences. 2019;20(11).
Heikal YM, Abdel-Aziz HM. Toxicology and safety aspects of nanosensor on environment, food, and agriculture. Nanosensors for Environment, Food and Agriculture. 2021;1:139-56.
Hernández-Hernández H, Quiterio-Gutiérrez T, Cadenas-Pliego G, Ortega-Ortiz H, Hernández-Fuentes AD, Cabrera de la Fuente M, Valdés-Reyna J, Juárez-Maldonado A. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants. 2019;8(10):355-.
Hernández-Tenorio F, Orozco-Sánchez F. Nanoformulaciones de bioinsecticidas botánicos para el control de plagas agrícolas. Revista de la Facultad de Ciencias. 2020;9:72-91.
Hong C, Ye S, Dai C, Wu C, Chen L, Huang Z. Sensitive and on-site detection of glyphosate based on papainstabilized fluorescent gold nanoclusters. Analytical and Bioanalytical Chemistry. 2020;412(29):8177-84.
Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, Wang X. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of Environmental Sciences. 2019;75:40-53.
Hui C, Zhang Y, Ni X, Cheng Q, Zhao Y, Zhao Y, Du L, Jiang H. Interactions of iron-based nanoparticles with soil dissolved organic matter: adsorption, aging, and effects on hexavalent chromium removal. Journal of Hazardous Materials. 2021;406.
Husein DZ, Hassanien R, Al-Hakkani MF. Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon. 2019;5(8).
Hussain A, Ali S, Rizwan M, ur Rehman MZ, Javed MR, Imran M, Chatha SAS, Nazir R. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution. 2018;242:1518-26.
Hussain B, Lin Q, Hamid Y, Sanaullah M, Di L, Khan MB, He Z, Yang X. Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Science of the Total Environment. 2020;712.
Hussain M, Raja NI, Iqbal M, Ejaz M, Aslam S. Green synthesis and evaluation of silver nanoparticles for antimicrobial and biochemical profiling in Kinnow (Citrus reticulata L.) to enhance fruit quality and productivity under biotic stress. IET nanobiotechnology. 2019;13(3):250-6.
Ibrahim E, Fouad H, Zhang M, Zhang Y, Qiu W, Yan C, Chen J. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC advances. 2019;9(50):29293-9.
Illés E, Tombácz E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science. 2006;295:115-23.
Ioannou A, Gohari G, Papaphilippou P, Panahirad S, Akbari A, Dadpour MR, Fotopoulos V. Advanced nanomaterials in agriculture under a changing climate: the way to the future?. Environmental and Experimental Botany. 2020;176.
Jahani M, Khavari-Nejad RA, Mahmoodzadeh H, Saadatmand S. Effects of cobalt oxide nanoparticles (Co3O4 NPs) on ion leakage, total phenol, antioxidant enzymes activities and cobalt accumulation in Brassica napus L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2020;48(3):1260-75.
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology. 2018;9(1):1050-74.
Jiang Y, Yu L, Sun H, Yin X, Wang C, Mathews S, Wang N. Transport of natural soil nanoparticles in saturated porous media: effects of pH and ionic strength. Chemical Speciation & Bioavailability. 2017;29(1):186-9.
Joshi A, Kaur S, Dharamvir K, Nayyar H, Verma G. Multi‐walled carbon nanotubes applied through seed‐priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). Journal of the Science of Food and Agriculture. 2018;98(8):3148-60.
Juárez-Maldonado A. Impact of nanomaterials on plants: what other implications do they have?. Biocell. 2021;46(3):651-4.
Kamran M, Ali H, Saeed MF, Bakhat HF, Hassan Z, Tahir M, Shah GM. Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum. Ecotoxicology and environmental safety. 2020;205.
Kaphle A, Navya PN, Umapathi A, Daima HK. Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environmental chemistry letters. 2018;16(1):43-58.
Kaphle A, Navya PN, Umapathi A, Chopra M, Daima HK. Nanoscience in food and agriculture 5. Cham: Springer; 2017.
Kashyap PL, Kumar S, Jasrotia P, Singh DP, Singh GP, Pudake R, Chauhan N, Kole C. Nanoscience for sustainable agriculture. Cham: Springer; 2019.
Kasote DM, Lee JH, Jayaprakasha GK, Patil BS. Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustainable Chemistry & Engineering. 2019;7(5):5142-51.
Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M, Zhang X, Ali S, Huang L. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant physiology and biochemistry. 2020;156:221-32.
Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH. Role of nanomaterials in plants under challenging environments. Plant physiology and biochemistry. 2017;110:194-209.
Kim S, Kim J, Lee I. Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chemistry and Ecology. 2011;27:49-55.
Kőrösi L, Pertics B, Schneider G, Bognár B, Kovács J, Meynen V, Scarpellini A, Pasquale L, Prato M. Photocatalytic inactivation of plant pathogenic bacteria using TiO2 nanoparticles prepared hydrothermally. Nanomaterials. 2020;10(9):1730-.
Kraas M, Schlich K, Knopf B, Wege F, Kägi R, Terytze K, Hund‐Rinke K. Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora. Environmental Toxicology and Chemistry. 2017;36:3305-13.
Kumaraswamy RV, Kumari S, Choudhary RC, Pal A, Raliya R, Biswas P, Saharan V. Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules. 2018;113:494-506.
Larsson S, Jansson M, Boholm Å. Expert stakeholders’ perception of nanotechnology: risk, benefit, knowledge, and regulation. Journal of Nanoparticle Research. 2019;21(3):1-17.
Larue C, Baratange C, Vantelon D, Khodja H, Surblé S, Elger A, Carrière M. Influence of soil type on TiO2 nanoparticle fate in an agro-ecosystem. Science of the Total Environment. 2018;630:609-17.
Li B, Chen Y, Liang WZ, Mu L, Bridges WC, Jacobson AR, Darnault CJ. Influence of cerium oxide nanoparticles on the soil enzyme activities in a soil-grass microcosm system. Geoderma. 2017;299:54-62.
Li Y, Zhu N, Liang X, Bai X, Zheng L, Zhao J, Li Y, Zhang Z, Gao Y. Silica nanoparticles alleviate mercury toxicity via immobilization and inactivation of Hg (ii) in soybean (Glycine max). Environmental Science: Nano. 2020;7(6):1807-1.
Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, Tang J, Liu W. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere. 2020;239.
Lira-Saldívar RH, Méndez Argüello B, De los Santos Villarreal G, Vera Reyes I. Potencial de la nanotecnología en la agricultura. Acta Universitaria. 2018;28(2):9-24.
Lira-Saldívar RH, Méndez Argüello B, De los Santos Villarreal G, Vera Reyes I. Agronanotecnología: una nueva herramienta para la agricultura moderna. Revista de la Facultad de Ciencias Agrarias UNCuyo. 2018;50(2):395-411.
Lombi E, Donner E, Dusinska M, Wickson F. A one health approach to managing the applications and implications of nanotechnologies in agriculture. Nature Nanotechnology. 2019;14(6):523-31.
Lu Y, Lan Q, Zhang C, Liu B, Wang X, Xu X, Liang X. Trace-level sensing of phosphate for natural soils by a nano-screen-printed electrode. Environmental Science & Technology. 2021;55(19):13093-102.
Macůrková A, Maryška L, Jindřichová B, Drobníková T, Vrchotová B, Pospíchalová R, Záruba K, Hubáček T, Siegel J, Burketová L, Lovecká P, Valentová O. Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and “soil-plant” systems. Applied Soil Ecology. 2021;168.
Mankad M, Patil G, Patel D, Patel P, Patel A. Comparative studies of sunlight mediated green synthesis of silver nanoparaticles from Azadirachta indica leaf extract and its antibacterial effect on Xanthomonas oryzae pv. ory-zae. Arabian Journal of Chemistry. 2020;13(1):2865-72.
Memari-Tabrizi EF, Yousefpour-Dokhanieh A, Babashpour-Asl M. Foli-ar-applied silicon nanoparticles mitigate cadmium stress through physio-chemical changes to improve growth, antioxidant capacity, and essential oil profile of summer savory (Satureja hortensis L.). Plant physiology and biochemistry. 2021;165:71-9.
Mishra M, Dashora K, Srivastava A, Fasake VD, Nag RH. Prospects, challenges and need for regulation of nanotechnology with special reference to India. Ecotoxicology and environmental safety. 2019;171:677-82.
Mitter N, Hussey K. Moving policy and regulation forward for nanotechnology applications in agriculture. Nature nanotechnology. 2019;14(6):508-10.
Mosa KA, Ismail A, Helmy M. Plant stress tolerance: an integrated omics approach. Cham, Switzerland: Springer; 2017.
Munir T, Rizwan M, Kashif M, Shahzad A, Ali S, Amin N, Imran M. Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Digest Journal of Nanomaterials & Biostructures (DJNB). 2018;13(1).
Nandhini M, Rajini SB, Udayashankar AC, Niranjana SR, Lund OS, Shetty HS, Prakash HS. Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Protection. 2019;121:103-12.
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. Journal of Hazardous Materials. 2021;401.
Nazaralian S, Majd A, Irian S, Najafi F, Ghahremaninejad F, Landberg T, Greger M. Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant physiology and biochemistry. 2017;115:25-33.
Nishu SD, Park S, Ji Y, Han I, Key J, Lee TK. The effect of engineered PLGA nanoparticles on nitrifying bacteria in the soil environment. Journal of Industrial and Engineering Chemistry. 2020;84:297-304.
Nithya K, Sathish A, Kumar PS, Ramachandran T. Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni(II) ions. J. Ind. Eng. Chem. 2018;59:230-41.
Nomngongo PN, Ngila JC, Musyoka SM, Msagati TA, Moodley B. A solid phase extraction procedure based on electrospun cellulose-g-oxolane-2, 5-dione nanofibers for trace determination of Cd, Cu, Fe, Pb and Zn in gasoline samples by ICP-OES. Analytical Methods. 2013;5(12):3000-8.
Nuruzzaman MD, Rahman MM, Liu Y, Naidu R. Nanoencapsulation, nano-guard for pesticides: a new window for safe application. Journal of Agricultural and Food Chemistry. 2016;64(7):1447-83.
Recommendation of the Council on OECD Legal Instruments the Safety Testing and Assessment of Manufactured Nanomaterials. 2022;.
Peng C, Tong H, Shen C, Sun L, Yuan P, He M, Shi J. Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. Science of the Total Environment. 2020;713.
Pérez‐Hernández H, Fernández‐Luqueño F, Huerta‐Lwanga E, Mendoza‐Vega J, Álvarez‐Solís JD. Effect of engineered nanoparticles on soil biota: Do they improve the soil quality and crop production or jeopardize them?. Land Degradation & Development. 2020;31(16):2213-30.
Pérez-Hernández H, Pérez-Moreno A, Sarabia-Castillo CR, García-Mayagoitia S, Medina-Pérez G, López-Valdez F, Campos-Montiel RG, Jayanta-Ku-mar P, Fernández-Luqueño F. Ecological drawbacks of nanomaterials produced on an industrial scale: collateral effect on human and environmental health. Water, Air, and Soil Pollution. 2021;232(10):435-.
Pérez-Labrada F, López-Vargas ER, Ortega-Ortiz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A. Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants. 2019;8(6):151-.
Peyrot C, Wilkinson KJ, Desrosiers M, Sauvé S. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environmental Toxicology and Chemistry. 2014;33(1):115-2.
Qian Y, Yao J, Russel M, Wang X, Sandy EH. Exploring medium‐term impact of oxide nanoparticles on soil microbial activity by isothermal micro-calorimetry and urease assay. Environmental Progress & Sustainable Energy. 2016;35(2):395-403.
Qu H, Ma C, Xing W, Xue L, Liu H, White JC, Xing B. Effects of copper oxide nanoparticles on Salix growth, soil enzyme activity and microbial community composition in a wetland mesocosm. Journal of Hazardous Materials. 2022;424.
Quiterio-Gutiérrez T, Ortega-Ortiz H, Cadenas-Pliego G, Hernández-Fuentes AD, Sandoval-Rangel A, Benavides-Mendoza A, Cabrera-De la Fuente M, Juárez-Maldonado A. The application of selenium and copper nanoparticles modifies the biochemical responses of tomato plants under stress by Alternaria solani. International Journal of Molecular Sciences. 2019;20(8).
Raj SN, Anooj ES, Rajendran K, Vallinayagam S. A comprehensive review on regulatory invention of nano pesticides in agricultural nano formulation and food system. Journal of Molecular Structure. 2021;.
Rajput V, Minkina T, Mazarji M, Shende S, Sushkova S, Mandzhieva S, Burachevskaya M, Chaplygin V, Singh A, Jatav H. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Annals of Agricultural Sciences. 2020;65(2):137-43.
Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P. Quantitative understanding of nanoparticle uptake in watermelon plants. Frontiers in Plant Science. 2016;7:1288-.
Rawtani D, Rao PK, Hussain CM. Recent advances in analytical, bioanalytical and miscellaneous applications of green nanomaterial. TrAC Trends in Analytical Chemistry. 2020;.
Rico CM, Peralta-Videa JR, Gardea-Torresdey JL. Nanotechnology and plant sciences. Cham, Suwitzerland: Springer; 2015.
Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269-77.
Romero‐Freire A, Lofts S, Martín Peinado FJ, Van Gestel CA. Effects of aging and soil properties on zinc oxide nanoparticle availability and its ecotoxicological effects to the earthworm Eisenia andrei. Environmental Toxicology and Chemistry. 2017;36(1):137-46.
Romero ICM. Principios para la supervisión y regulación de nanomateriales y nanotecnología. Literatura gris. 2020;:1-24.
Salama DM, Osman SA, Abd El-Aziz ME, Abd Elwahed MS, Shaaban EA. Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatalysis and Agricultural Biotechnology. 2019;18.
Saleem H, Zaidi SJ. Recent developments in the application of nanomaterials in agroecosystems. Nanomaterials. 2020;10(12):2411-.
Saleh TA. Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation. 2020;.
Schimpf MG, Milesi MM, Zanardi MV, Varayoud J. Disruption of developmental programming with long-term consequences after exposure to a glyphosate-based herbicide in a rat model. Food and Chemical Toxicology. 2021;.
Shafiq F, Iqbal M, Ali M, Ashraf MA. Seed pretreatment with polyhydroxy fullerene nanoparticles confer salt tolerance in wheat through upregulation of H2O2 neutralizing enzymes and phosphorus uptake. Journal of Soil Science and Plant Nutrition. 2019;19(4):734-42.
Shah T, Latif S, Saeed F, Ali I, Ullah S, Alsahli AA, Ahmad P. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science. 2021;33(1).
Sharma P, Pandey V, Sharma MMM, Patra A, Singh B, Mehta S, Husen A. A review on biosensors and nanosensors application in agroecosystems. Nanoscale Research Letters. 2021;16(1):1-24.
Simonin M, Colman BP, Anderson SM, King RS, Ruis MT, Avellan A, Bergemann CM, Perrotta BG, Geitner NK, Ho M, De la Barrera B, Unrine JM, Lowry GV, Richardson CJ, Wiesner MR, Bernhardt ES. Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment. Ecological Applications. 2018;28:1435-49.
Sotoodehnia-Korani S, Iranbakhsh A, Ebadi M, Majd A, Ardebili ZO. Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environmental Pollution. 2020;265.
Srivastava AK, Dev A, Karmakar S. Nanosensors and nanobiosensors in food and agriculture. Environmental Chemistry Letters. 2018;16(1):161-82.
Stevens AW. Review: The economics of soil health. Food Policy. 2018;89:1-9.
Sun L, Xue Y, Peng C, Xu C, Shi J. Influence of sulfur fertilization on CuO nanoparticles migration and transformation in soil pore water from the rice (Oryza sativa L.) rhizosphere. Environmental Pollution. 2020;257.
Sundaria N, Singh M, Upreti P, Chauhan RP, Jaiswal JP, Kumar A. Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. Journal of Plant Growth Regulation. 2019;38(1):122-31.
Surendranath A, Mohanan PV. Impact of nanoparticles in balancing the ecosystem. Biointerface Research in Aplied Chemistry. 2021;11(3):10461-8.
Tarannum N, Divya YK, . Facile green synthesis and applicatoins of silver nanoparticles: A state-of-the-art review. RSC Advances. 2019;:60-.
Temizel-Sekeryan S, Hicks AL. Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment. Resources, Conservation and Recycling. 2020;156.
Thangadurai D, Shettar AK, Sangeetha J, Adetunji CO, Islam S, Al-Tawaha ARMS. Nanomaterials for soil remediation. Elsevier; 2021.
Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant physiology and biochemistry. 2015;96:189-98.
Tripathi DK, Tripathi A, Singh S, Singh Y, Vishwakarma K, Yadav G, Chauhan DK. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Frontiers in Microbiology. 2017;8(7).
Tümay SO, Şenocak A, Sarı E, Şanko V, Durmuş M, Demirbas E. A new perspective for electrochemical determination of parathion and chlorantraniliprole pesticides via carbon nanotube-based thiophene-ferrocene appended hybrid nanosensor. Sensors and Actuators B: Chemical. 2021;.
Umapathi R, Sonwal S, Lee MJ, Rani GM, Lee ES, Jeon TJ, Huh YS. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coordination Chemistry Reviews. 2021;446.
Ur Rahim H, Qaswar M, Uddin M, Giannini C, Herrera ML, Rea G. Nano-enable materials promoting sustainability and resilience in modern agriculture. Nanomaterials. 2021;11(8).
Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, ur Rehman H, Ashraf I, Sanaullah M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment. 2020;721.
Van Dijk H, Fischer AR, Marvin HJ, Van Trijp HC. Determinants of stakeholders’ attitudes towards a new technology: nanotechnology applications for food, water, energy and medicine. Journal of Risk Research. 2017;20(2):277-98.
Verma S, Nizam S, Verma PK. Stress signaling in plants: genomics and proteomics perspectives. Mryam S, Altaf A, Abdin M, editores. 2013.
Wang D, Jaisi DP, Yan J, Jin Y, Zhou D. Transport and retention of polyvinylpyrrolidone-coated silver nanoparticles in natural soils. Vadose Zone Journal. 2015;14(7).
Wang M, Gao B, Tang D. Review of key factors controlling engineered nanoparticle transport in porous media. Journal of Hazardous Materials. 2016;318:233-46.
Wei WJ, Li L, Gao YP, Wang Q, Zhou YY, Liu X, Yang Y. Enzyme digestion combined with SP-ICP-MS analysis to characterize the bioaccumulation of gold nanoparticles by mustard and lettuce plants. Science of the Total Environment. 2021;777.
Wu H, Nißler R, Morris V, Herrmann N, Hu P, Jeon SJ, Kruss S, Giraldo JP. Monitoring plant health with near-infrared fluorescent H2O2 nanosensors. Nano letters. 2020;20(4):2432-4.
Xiaohong LIU, Juan WANG, Lingli WU, Zhang L, Youbin SI. Impacts of silver nanoparticles on enzymatic activities, nitrifying bacteria, and nitrogen transformation in soil amended with ammonium and nitrate. Pedosphere. 2021;31(6):934-43.
Xin X, Zhao F, Zhao H, Goodrich SL, Hill MR, Sumerlin BS, Stoffella PJ, Wright AL, He Z. Comparative assessment of polymeric and other nanoparticles impacts on soil microbial and biochemical properties. Geoderma. 2020;367.
Xing Y, Yi R, Yang H, Xu Q, Huang R, Tang J, Yu J. Antifungal effect of chitosan/nano-TiO2 composite coatings against colletotrichum gloeosporioides, Cladosporium oxysporum and Penicillium steckii. Molecules. 2021;26(15):4401-.
Yang W, Cheng P, Adams CA, Zhang S, Sun Y, Yu H, Wang F. Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles. Soil Biology and Biochemistry. 2021;155.
Younis SA, Ki HK, Sabry MS, Vasileios A, Yiu FT, Jörg R, Akash D, Brown RJC. Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies. Renewable and Sustainable Energy Reviews. 2021;152.
Zahedi SM, Moharrami F, Sarikhani S, Padervand M. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Scientific reports. 2020;10(1):1-18.
Zhai Y, Chen L, Liu G, Song L, Arenas-Lago D, Kong L, Peijnenburg W, Vijver MG. Compositional and functional responses of bacterial community to titanium dioxide nanoparticles varied with soil heterogeneity and exposure duration. Science of the Total Environment. 2021;773.
Zhai Y, Hunting ER, Liu G, Baas E, Peijnenburg WJ, Vijver MG. Compositional alterations in soil bacterial communities exposed to TiO2 nanoparticles are not reflected in functional impacts. Environmental research. 2019;178.
Zhang H, Yue M, Zheng X, Xie C, Zhou H, Li L. Physiological effects of single-and multi-walled carbon nanotubes on rice seedlings. IEEE Transactions on Nanobioscience. 2017;16(7):563-70.
Zhao J, Tang J, Dang T. Influence of extracellular polymeric substances on the heteroaggregation between CeO2 nanoparticles and soil mineral particles. Science of the Total Environment. 2022;806.
Zhao S, Su X, Wang Y, Yang X, Bi M, He Q, Chen Y. Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N2O emission. Chemosphere. 2020;245.
Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, Ji R. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry. 2020;68(7):1935-47.
Zhou DM, Jin SY, Wang YJ, Wang P, Weng NY, Wang Y. Assessing the impact of iron-based nanoparticles on pH, dissolved organic carbon, and nutrient availability in soils. Soil and Sediment Contamination: An International Journal. 2012;21(1):101-14.
Zhu Y, Wu J, Chen M, Liu X, Xiong Y, Wang Y, Fen T, Kang S, Wang X. Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. Chemosphere. 2019;237.

Artículos más leídos del mismo autor/a