El rol de las plantas silvestres o cultivables de México en la síntesis de nanopartículas

Contenido principal del artículo

Maleni N. Hernández-Díaz
http://orcid.org/0000-0002-5623-8347
Nina Torres-Valencia
http://orcid.org/0000-0003-2844-5944
Mariana Miranda-Arámbula
http://orcid.org/0000-0003-1760-775X
Ada M. Ríos-Cortés
http://orcid.org/0000-0001-5307-0262
Fabián Fernández-Luqueño
http://orcid.org/0000-0002-9419-8200
Valentín López-Gayou
http://orcid.org/0000-0003-0859-0482
Fernando López-Valdez
http://orcid.org/0000-0003-2347-2054

Resumen

El uso exitoso de las nanopartículas (NP) en diversos sectores ha incrementado el interés y la demanda para sintetizarlas, explorarlas y estudiarlas. La síntesis de NP (tanto como sus derivados, reducciones, funcionalizaciones, o conjugaciones), sus propiedades y aplicaciones se han analizado desde enfoques modernos, a través de diversas técnicas de avanzada, para aplicaciones múltiples. El objetivo de este trabajo es destacar la importancia de las plantas silvestres o cultivables de México como fuente de metabolitos y extractos, empleadas como origen y medio de síntesis de NP. Asimismo, se destaca la síntesis verde como un método amigable con el medioambiente para aprovechar la amplia gama de posibilidades que representa el reservorio natural de plantas mexicanas y sus diversas aplicaciones y propiedades a explorar en el campo de la nanobiotecnología.

Detalles del artículo

Cómo citar
Hernández-Díaz, M. N., Torres-Valencia, N., Miranda-Arámbula, M., Ríos-Cortés, A. M., Fernández-Luqueño, F., López-Gayou, V., & López-Valdez, F. (2024). El rol de las plantas silvestres o cultivables de México en la síntesis de nanopartículas. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 17(32), 1e-17e. https://doi.org/10.22201/ceiich.24485691e.2024.32.69743 (Original work published 9 de marzo de 2023)
Sección
Artículos de revisión

Citas

Abdul Razak NA, Othman NH, Shayuti MSM, Jumahat A, Sapiai N, Lau WJ. Agricultural and industrial waste-derived mesoporous silica nanoparticles: a review on chemical synthesis route. Journal of Environmental Chemical Engineering. 2022;10(2).
Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of Advanced Research. 2016;7(1):17-28.
Akintelu SA, Bo Y, Folorunso AS. A review on synthesis, optimization, mechanism, characterization, and antibacterial application of silver nanoparticles synthesized from plants. Journal of Chemistry. 2020;.
Álvarez-Chimal R, García-Pérez VI, Álvarez-Pérez MA, Arenas-Alatorre J Ángel. Green synthesis of ZnO nanoparticles using a Dysphania ambrosioides extract. Structural characterization and antibacterial properties. Materials Science and Engineering: C. 2021;118:111540-.
Bhargava A, Jain N, Khan MA, Pareek V, Dilip RV, Panwar J. Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B. Journal of Environmental Management. 2016;183:22-3.
Dzul-Erosa MS, Cauich-Díaz MM, Razo-Lazcano TA, Avila-Rodríguez M, Reyes-Aguilera JA, González-Muñoz MP. Aqueous leaf extracts of Cnidoscolus chayamansa (Mayan chaya) cultivated in Yucatán México. Part II: Uses for the phytomediated synthesis of silver nanoparticles. Materials Science and Engineering: C. 2018;91:838-52.
Esquivel-Figueredo R de la C, Siannah MM-D. Síntesis biológica de nanopartículas de plata: revisión del uso potencial de la especie Trichoderma. Revista Cubana de Química. 2021;33(2):23-45.
González E, González F. Síntesis por radiación con microondas de nanotubos de carbono. Universitas Scientiarum. 2008;13(3):258-66.
Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: a review. Environmental Chemistry Letters. 2021;19(1):355-74.
Khan M, Khan MSA, Borah KK, Goswami Y, Hakeem KR, Chakrabartty I. The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: a review. Environmental Advances. 2021;6.
Kumar Rai P, Singh JS. Invasive alien plant species: their impact on environment, ecosystem services and human health. Ecological Indicators. 2020;111.
Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An up-dated report. Saudi Pharmaceutical Journal. 2016;24(4):473-84.
Ledezma A, Romero J, Hernández M, Moggio I, Arias E, Padrón G, Orozco V, Martínez A, Torres S. Síntesis biomimética de nanopartículas de plata utilizando extracto acuoso de nopal (Opuntia sp.) y su electrohilado polimérico. Superficies y Vacío. 2014;27(4):133-.
López-Valdez F, Miranda-Arámbula M, Ríos-Cortés AM, Fernández-Luqueño F, de-la-Luz V. Agricultural nanobiotechnology: modern agriculture for a sustainable future. López-Valdez F, Fernández-Luqueño F, editores. Cham: Springer International Publishing; 2018.
Mercado DF, Ballesteros-Rueda LM, Lizarazo-Gómez CC, Núñez-Rodríguez BE, Arenas-Calderón E, Baldovino‑Medrano VG. Synthesis and use of functionalized SiO2 nanoparticles for formulating heavy oil macroemulsions. Chemical Engineering Science. 2022;252:117531-.
Oliveira JL de, Ramos Campos EV, Bakshi M, Abhilash PC, Fernandes Fraceto L. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnology Advances. 2014;32(8):1550-61.
Pájaro Castro NP, Olivero Verbel JT. Química verde: un nuevo reto. Ciencia e Ingeniería Neogranadina. 2011;21(2):169-82.
Rodríguez-Félix F, López-Cota AG, Moreno-Vásquez MJ, Graciano-Verdugo AZ, Quintero-Reyes IE, Del-Toro-Sánchez CL, Tapia-Hernández JA. Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) waste extract and its antibacterial activity. Heliyon. 2021;7(4).
Sanità G, Carrese B, Lamberti A. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Frontiers in Molecular Biosciences. 2020;7.
Santos A, Troncoso C, Lamilla C, Llanquinao V, Pavez M, Barrientos L. Nanopartículas sintetizadas por bacterias antárticas y sus posibles mecanismos de síntesis. International Journal of Morphology. 2017;35(1):26-33.
Téllez-de-Jesús DG, Flores-Lopez NS, Cervantes-Chávez JA, Hernández-Martínez AR. Antibacterial and antifungal activities of encapsulated Au and Ag nanoparticles synthesized using Argemone mexicana L extract, against antibiotic-resistant bacteria and Candida albicans. Surfaces and Interfaces. 2021;27.
Torres-Valencia N, Miranda-Arámbula M, Ríos-Cortés AM, López-Gayou V, López-Valdez F. Las malezas como un campo de oportunidades en el estudio de la síntesis verde. Frontera Biotecnológica. 2021;9(18):4-8.
Tourinho PS, Gestel CAM van, Lofts S, Svendsen C, Soares AMVM, Loureiro S. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environmental Toxicology and Chemistry. 2012;31(8):1679-92.
Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. Journal of Nanoparticle Research. 2010;12(1):237-46.
Urrejola MC, Soto LV, Zumarán CC, Peñaloza JP, Álvarez B, Fuentevilla I, Haidar ZS. Sistemas de nanopartículas poliméricas II: estructura, métodos de elaboración, características, propiedades, biofuncionalización y tecnologías de auto-ensamblaje capa por capa (layer-by-layer self-assembly). International Journal of Morphology. 2018;36(4):1463-71.
Yang Y, Waterhouse GIN, Chen Y, Sun-Waterhouse D, Li D. Microbial-enabled green biosynthesis of nanomaterials: current status and future prospects. Biotechnology Advances. 2022;55:107914-.
Zanella R. Metodologías para la síntesis de nanopartículas: controlando forma y tamaño. Mundo Nano. Revista interdisciplinaria en nanociencias y nanotecnología. 2012;5(1):69-81.