Nanocompuestos poliméricos para adsorción de contaminantes orgánicos

Contenido principal del artículo

Arantza Estefania Olvera Ramos
https://orcid.org/0009-0002-2649-6289
Marlene Lariza Andrade Guel
Carlos Alberto Ávila Orta
https://orcid.org/0000-0002-2820-0958
Christian Javier Cabello Alvarado
https://orcid.org/0000-0002-9559-0976
Gregorio Cadenas Pliego
https://orcid.org/0000-0002-2692-4995
Jesús Gilberto Rodríguez Velázquez
https://orcid.org/0009-0001-4905-585X
Sergio Gabriel Flores Gallardo

Resumen

La contaminación y escasez de agua se han consolidado como desafíos globales de creciente magnitud. Los efluentes presentes en reservas de agua contienen altas concentraciones de contaminantes tóxicos, destacándose entre ellos los compuestos orgánicos. La exposición a estas sustancias representa un riesgo latente tanto para la salud humana como para el ecosistema. Para abordar esta problemática, se ha propuesto la implementación de la nanotecnología en la creación de materiales con propiedades adsorbentes. Los nanocompuestos poliméricos son sistemas multifase en los cuales al menos una de las fases presenta dimensiones nanométricas y, cuando se logra una adecuada sinergia entre sus componentes, se pueden mejorar significativamente las propiedades del material. Asimismo, la adsorción se caracteriza por ser un método eficaz para la eliminación de contaminantes, ofreciendo múltiples ventajas operativas a un bajo costo. La incorporación de nanoarcillas, nanopartículas metálicas y nanopartículas a base de carbono en matrices poliméricas son ejemplos de materiales que demuestran altos niveles de adsorción de contaminantes orgánicos en medio acuoso. En esta revisión se abordan los avances más recientes en el desarrollo y aplicación de nanocompuestos poliméricos para la adsorción de colorantes, fármacos y toxinas en el tratamiento de aguas residuales. 

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Olvera Ramos, A. E., Andrade Guel, M. L., Ávila Orta, C. A., Cabello Alvarado, C. J., Cadenas Pliego, G., Rodríguez Velázquez, J. G., & Flores Gallardo, S. G. (2025). Nanocompuestos poliméricos para adsorción de contaminantes orgánicos. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 19(36), e69890. https://doi.org/10.22201/ceiich.24485691e.2026.36.69890
Sección
Artículos de revisión

Citas

A. Ávila-Orta, C., González-Morones, P., Agüero- Valdez, D., González-Sánchez, A., G. Martínez-Colunga, J., M. Mata-Padilla, J. y J. Cruz-Delgado, V. (2019). Ultrasound- assisted melt extrusion of polymer nanocomposites. En Nanocomposites – Recent evolutions. IntechOpen. https://doi.org/10.5772/intechopen.80216. DOI: https://doi.org/10.5772/intechopen.80216

Ahamad, T., Ruksana, Chaudhary, A. A., Naushad, M. y Alshehri, S. M. (2019). Fabrication of MnFe2O4 nanoparticles embedded chitosan-diphenylureaformaldehyde resin for the removal of tetracycline from aqueous solution. International Journal of Biological Macromolecules, 134: 180-188. https://doi.org/10.1016/j.ijbiomac.2019.04.204. DOI: https://doi.org/10.1016/j.ijbiomac.2019.04.204

Ahamad, Z. y Nasar, A. (2024). Polypyrrole-decorated bentonite magnetic nanocomposite: a green approach for adsorption of anionic methyl orange and cationic crystal violet dyes from contaminated water. Environmental Research, 247: 118193. https://doi.org/10.1016/j.envres.2024.118193. DOI: https://doi.org/10.1016/j.envres.2024.118193

Ahmed, M. A., Abdelbar, N. M. y Mohamed, A. A. (2018). Molecular imprinted chitosan-TiO2 nanocomposite for the selective removal of Rose Bengal from wastewater. International Journal of Biological Macromolecules, 107: 1046-1053. https://doi.org/10.1016/j.ijbiomac.2017.09.082. DOI: https://doi.org/10.1016/j.ijbiomac.2017.09.082

Ahmed, M. A., Ahmed, M. A. y Mohamed, A. A. (2023). Adsorptive removal of tetracycline antibiotic onto magnetic graphene oxide nanocomposite modified with polyvinylpyrroilidone. Reactive and Functional Polymers, 191: 105701. https://doi.org/10.1016/j.reactfunctpolym.2023.105701. DOI: https://doi.org/10.1016/j.reactfunctpolym.2023.105701

Akharame, M. O., Fatoki, O. S., Opeolu, B. O., Olorunfemi, D. I. y Oputu, O. U. (2018). Polymeric nanocomposites (PNCs) for wastewater remediation: an overview. Polymer-Plastics Technology and Engineering, 57(17): 1801-1827. https://doi.org/10.1080/03602559.2018.1434666. DOI: https://doi.org/10.1080/03602559.2018.1434666

Akpor, O., Otohinoyi, D. A., Olaolu, T. D. y Aderiye, J. B. I. (2014). Pollutants in wastewater effluents: impact and remediation processes. International Journal of Environmental Research and Earth Science, 3: 50-59. https://www.researchgate.net/publication/261834688.

Alharbi, O. M. L., Basheer, A. A., Khattab, R. A. y Ali, I. (2018). Health and environmental effects of persistent organic pollutants. Journal of Molecular Liquids, 263, 442-453. https://doi.org/10.1016/j.molliq.2018.05.029. DOI: https://doi.org/10.1016/j.molliq.2018.05.029

Ali, I., Asim, Mohd. y Khan, T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113: 170-183. https://doi.org/10.1016/j.jenvman.2012.08.028. DOI: https://doi.org/10.1016/j.jenvman.2012.08.028

Alsukaibi, A. K. D. (2022). Various approaches for the detoxification of toxic dyes in wastewater. Processes, 10(10): 1968. MDPI. https://doi.org/10.3390/pr10101968. DOI: https://doi.org/10.3390/pr10101968

Amin, K. A., Abdel Hameid, H. y Abd Elsttar, A. H. (2010). Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology, 48(10): 2994-2999. https://doi.org/10.1016/j.fct.2010.07.039. DOI: https://doi.org/10.1016/j.fct.2010.07.039

Andrade-Guel, M., Ávila-Orta, C. A., Cadenas-Pliego, G., Cabello-Alvarado, C. J., Pérez-Alvarez, M., Reyes-Rodríguez, P., Inam, F., Cortés-Hernández, D. A. y Quiñones-Jurado, Z. V. (2020). Synthesis of nylon 6/modified carbon black nanocomposites for application in uric acid adsorption. Materials, 13(22): 5173. https://doi.org/10.3390/ma13225173. DOI: https://doi.org/10.3390/ma13225173

Andrade-Guel, M., Cabello-Alvarado, C., Romero-Huitzil, R. L., Rodríguez-Fernández, O. S., Ávila-Orta, C. A., Cadenas-Pliego, G., Medellín-Banda, D. I., Gallardo-Vega, C. y Cepeda-Garza, J. (2021). Nanocomposite PLA/C20A nanoclay by ultrasound-assisted melt extrusion for adsorption of uremic toxins and methylene blue dye. Nanomaterials, 11(10): 2477. https://doi.org/10.3390/nano11102477. DOI: https://doi.org/10.3390/nano11102477

Andrade-Guel, M., Reyes-Rodríguez, P. Y., Cabello-Alvarado, C. J., Cadenas-Pliego, G. y Ávila-Orta, C. A. (2022). Influence of modified carbon black on nylon 6 nonwoven fabric and performance as adsorbent material. Nanomaterials, 12(23). https://doi.org/10.3390/nano12234247. DOI: https://doi.org/10.3390/nano12234247

Anuma, S., Mishra, P. y Bhat, B. R. (2021). Polypyrrole functionalized cobalt oxide graphene (COPYGO) nanocomposite for the efficient removal of dyes and heavy metal pollutants from aqueous effluents. Journal of Hazardous Materials, 416, 125929. https://doi.org/10.1016/j.jhazmat.2021.125929. DOI: https://doi.org/10.1016/j.jhazmat.2021.125929

Armstrong, G. (2015). An introduction to polymer nanocomposites. European Journal of Physics, 36(6): 063001. https://doi.org/10.1088/0143-0807/36/6/063001. DOI: https://doi.org/10.1088/0143-0807/36/6/063001

Asses, N., Ayed, L., Hkiri, N. y Hamdi, M. (2018). Congo red decolorization and detoxification by Aspergillus niger: removal mechanisms and dye degradation pathway. BioMed Research International, 2018: 1-9.

https://doi.org/10.1155/2018/3049686. DOI: https://doi.org/10.1155/2018/3049686

Bal, G. y Thakur, A. (2021). Distinct approaches of removal of dyes from wastewater: a review. Materials Today: Proceedings, 50: 1575-1579. https://doi.org/10.1016/j.matpr.2021.09.119. DOI: https://doi.org/10.1016/j.matpr.2021.09.119

Bilińska, L. y Gmurek, M. (2021). Novel trends in AOPs for textile wastewater treatment. Enhanced dye by-products removal by catalytic and synergistic actions. Water Resources and Industry, 26: 100160. https://doi.org/10.1016/j.wri.2021.100160. DOI: https://doi.org/10.1016/j.wri.2021.100160

Cao, Y., Sheng, T., Yang, Z., Huang, D. y Sheng, L. (2021). Synthesis of molecular-imprinting polymer coated magnetic nanocomposites for selective capture and fast removal of environmental tricyclic analogs. Chemical Engineering Journal, 426: 128678. https://doi.org/10.1016/j.cej.2021.128678. DOI: https://doi.org/10.1016/j.cej.2021.128678

Chmielewski, M., Heimbürger, O., P. Stenvinkel y B. Lindholm. (2013). Uremic toxicity. Nutritional management of renal disease. 3a ed. 49-77. Academic Press is an imprint of Elsevier. DOI: https://doi.org/10.1016/B978-0-12-391934-2.00004-7

Chopra, S. y Kumar, D. (2020). Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon, 6(6): e04087. https://doi.org/10.1016/j.heliyon.2020.e04087. DOI: https://doi.org/10.1016/j.heliyon.2020.e04087

Çınar, S., Kaynar, Ü. H., Aydemir, T., Çam Kaynar, S. y Ayvacıklı, M. (2017). An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/chitosan composite beads. International Journal of Biological Macromolecules, 96: 459-465. https://doi.org/10.1016/j.ijbiomac.2016.12.021. DOI: https://doi.org/10.1016/j.ijbiomac.2016.12.021

Conagua. (2018). Estadísticas del agua en México 2018. www.gob.mx/conagua.

Crini, G. y Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1): 145-155. https://doi.org/10.1007/s10311-018-0785-9. DOI: https://doi.org/10.1007/s10311-018-0785-9

Darwish, M. S. A., Mostafa, M. H. y Al-Harbi, L. M. (2022). Polymeric nanocomposites for environmental and industrial applications. International Journal of Molecular Sciences, 23(3): 1023. https://doi.org/10.3390/ijms23031023. DOI: https://doi.org/10.3390/ijms23031023

Das, P., Nisa, S., Debnath, A. y Saha, B. (2022). Enhanced adsorptive removal of toxic anionic dye by novel magnetic polymeric nanocomposite: optimization of process parameters. Journal of Dispersion Science and Technology, 43(6): 880-895. https://doi.org/10.1080/01932691.2020.1845958. DOI: https://doi.org/10.1080/01932691.2020.1845958

Das, R. (2018). Carbon nanotubes for clean water. R. Das (ed.). Springer International Publishing. https://doi.org/10.1007/978-3-319-95603-9. DOI: https://doi.org/10.1007/978-3-319-95603-9

Dutta, S., Adhikary, S., Bhattacharya, S., Roy, D., Chatterjee, S., Chakraborty, A., Banerjee, D., Ganguly, A., Nanda, S. y Rajak, P. (2024). Contamination of textile dyes in aquatic environment: adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. Journal of Environmental Management, 353: 120103. https://doi.org/10.1016/j.jenvman.2024.120103. DOI: https://doi.org/10.1016/j.jenvman.2024.120103

Dutta, S., Gupta, B., Srivastava, S. K. y Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Materials Advances, 2(14): 4497-4531. https://doi.org/10.1039/D1MA00354B. DOI: https://doi.org/10.1039/D1MA00354B

Dutta, S., Srivastava, S. K., Gupta, B. y Gupta, A. K. (2021). Hollow polyaniline microsphere/MnO 2 /Fe 3 O 4 nanocomposites in adsorptive removal of toxic dyes from contaminated water. ACS Applied Materials & Interfaces, 13(45): 54324-54338. https://doi.org/10.1021/acsami.1c15096. DOI: https://doi.org/10.1021/acsami.1c15096

Ekhlasi, A., Solouk, A., Haghbin Nazarpak, M., Pasbakhsh, P. y Shokrollahi, M. (2023). Electrospun polyacrylonitrile/halloysite nanofibrous membranes for creatinine removal from kidney failure patients. Applied Clay Science, 243: 107083. https://doi.org/10.1016/j.clay.2023.107083. DOI: https://doi.org/10.1016/j.clay.2023.107083

El-Shahawi, M. S., Hamza, A., Bashammakh, A. S. y Al-Saggaf, W. T. (2010). An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta, 80(5): 1587-1597. https://doi.org/10.1016/j.talanta.2009.09.055. DOI: https://doi.org/10.1016/j.talanta.2009.09.055

Fahmi, M. Z., Wathoniyyah, M., Khasanah, M., Rahardjo, Y., Wafiroh, S. y Abdulloh, A. (2018). Incorporation of graphene oxide in polyethersulfone mixed matrix membranes to enhance hemodialysis membrane performance. RSC Advances, 8(2): 931-937. https://doi.org/10.1039/C7RA11247E. DOI: https://doi.org/10.1039/C7RA11247E

Fakhri-B., M.-S., Ghassemi-Barghi, N., Moradnia-Mehdikhanmahaleh, M., Raeis-Zadeh, S.-M.-M., Mousavi, T., Rezaee, R., Daghighi, M. y Abdollahi, M. (2024). Pharmaceutical wastewater toxicity: an ignored threat to the public health. Sustainable Environment, 10(1). https://doi.org/10.1080/27658511.2024.2322821. DOI: https://doi.org/10.1080/27658511.2024.2322821

Falconi, C. A., Junho, C. V. da C., Fogaça-Ruiz, F., Vernier, I. C. S., da Cunha, R. S., Stinghen, A. E. M. y Carneiro-Ramos, M. S. (2021). Uremic toxins: an alarming danger concerning the cardiovascular system. En Frontiers in Physiology, vol. 12. Frontiers Media S. A. https://doi.org/10.3389/fphys.2021.686249. DOI: https://doi.org/10.3389/fphys.2021.686249

Farhan Hanafi, M. y Sapawe, N. (2020). A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Materials Today: Proceedings, 31: A141-A150. https://doi.org/10.1016/j.matpr.2021.01.258. DOI: https://doi.org/10.1016/j.matpr.2021.01.258

Félix-Cañedo, T. E., Durán-Álvarez, J. C. y Jiménez-Cisneros, B. (2013). The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Science of the Total Environment, (454-455): 109-118. https://doi.org/10.1016/j.scitotenv.2013.02.088. DOI: https://doi.org/10.1016/j.scitotenv.2013.02.088

Fernandes, F. H., Bustos-Obregon, E. y Salvadori, D. M. F. (2015). Disperse Red 1 (textile dye) induces cytotoxic and genotoxic effects in mouse germ cells. Reproductive Toxicology, 53: 75-81. https://doi.org/10.1016/j.reprotox.2015.04.002. DOI: https://doi.org/10.1016/j.reprotox.2015.04.002

Fu, C.-C., Hsiao, Y.-S., Ke, J.-W., Syu, W.-L., Liu, T.-Y., Liu, S.-H. y Juang, R.-S. (2020). Adsorptive removal of p-cresol and creatinine from simulated serum using porous polyethersulfone mixed-matrix membranes. Separation and Purification Technology, 245: 116884. https://doi.org/10.1016/j.seppur.2020.116884. DOI: https://doi.org/10.1016/j.seppur.2020.116884

Gavrilescu, C.-M., Paraschiv, C., Horjinec, P., Sotropa, D.-M. y Barbu, R.-M. (2018). The advantages and disadvantages of nanotechnology. Romanian Journal of Oral Rehabilitation, 10(2): 153-159.

Ghamkhari, A., Mohamadi, L., Kazemzadeh, S., Zafar, M. N., Rahdar, A. y Khaksefidi, R. (2020). Synthesis and characterization of poly(styrene-block-acrylic acid) diblock copolymer modified magnetite nanocomposite for efficient removal of penicillin G. Composites Part B: Engineering, 182: 107643. https://doi.org/10.1016/j.compositesb.2019.107643. DOI: https://doi.org/10.1016/j.compositesb.2019.107643

Gusain, R., Kumar, N. y Ray, S. S. (2020). Recent advances in carbon nanomaterial-based adsorbents for water purification. Coordination Chemistry Reviews, 405: 213111. https://doi.org/10.1016/j.ccr.2019.213111. DOI: https://doi.org/10.1016/j.ccr.2019.213111

Hakami, A. A. H., Wabaidur, S. M., Ali Khan, M., Abdullah Alothman, Z., Rafatullah, Mohd. y Siddiqui, M. R. (2020). Development of ultra-performance liquid chromatography – Mass spectrometry method for simultaneous determination of three cationic dyes in environmental samples. Molecules, 25(19): 4564. https://doi.org/10.3390/molecules25194564. DOI: https://doi.org/10.3390/molecules25194564

Hanafi, M. F. y Sapawe, N. (2020). A review on the current techniques and technologies of organic pollutants removal from water/wastewater. Materials Today: Proceedings, 31: A158-A165. https://doi.org/10.1016/j.matpr.2021.01.265. DOI: https://doi.org/10.1016/j.matpr.2021.01.265

Hosseinzadeh, S., Hosseinzadeh, H., Pashaei, S. y Khodaparast, Z. (2018). Synthesis of magnetic functionalized MWCNT nanocomposite through surface RAFT co-polymerization of acrylic acid and N-isopropyl acrylamide for removal of cationic dyes from aqueous solutions. Ecotoxicology and Environmental Safety, 161: 34-44. https://doi.org/10.1016/j.ecoenv.2018.05.063. DOI: https://doi.org/10.1016/j.ecoenv.2018.05.063

Ismail, A. F., Abidin, M. N. Z., Mansur, S., Zailani, M. Z., Said, N., Raharjo, Y., Rosid, S. M., Othman, M. H. D., Goh, P. S. y Hasbullah, H. (2018). Hemodialysis membrane for blood purification process. En Membrane separation principles and applications: from material selection to mechanisms and industrial uses, 283-314. Elsevier. https://doi.org/10.1016/B978-0-12-812815-2.00009-0. DOI: https://doi.org/10.1016/B978-0-12-812815-2.00009-0

Jacob Kaleekkal, N. (2021). Heparin immobilized graphene oxide in polyetherimide membranes for hemodialysis with enhanced hemocompatibility and removal of uremic toxins. Journal of Membrane Science, 623: 119068. https://doi.org/10.1016/j.memsci.2021.119068. DOI: https://doi.org/10.1016/j.memsci.2021.119068

Jones, O. A. H., Voulvoulis, N. y Lester, J. N. (2003). Perspectives potential impact of pharmaceuticals on environmental health. Bulletin of the World Health Organization, 81(10).

Kamari, S. y Shahbazi, A. (2020). Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES – Nanofiltration membrane matrix for salts, heavy metal ion and dye removal: long-term operation and reusability tests. Chemosphere, 243: 125282. https://doi.org/10.1016/j.chemosphere.2019.125282. DOI: https://doi.org/10.1016/j.chemosphere.2019.125282

Karia, G. L., Christian, R. A. y Jariwala, N. D. (2024). Wastewater treatment: concepts and design approach. 3a ed. Dehli: Asoke K, Ghosh, PHI Learning Private Limited, Rimjhim House.

Kaur, K., Jindal, R. y Meenu. (2019). Self-assembled GO incorporated CMC and chitosan-based nanocomposites in the removal of cationic dyes. Carbohydrate Polymers, 225: 115245. https://doi.org/10.1016/j.carbpol.2019.115245. DOI: https://doi.org/10.1016/j.carbpol.2019.115245

Kesari, K. K., Soni, R., Jamal, Q. M. S., Tripathi, P., Lal, J. A., Jha, N. K., Siddiqui, M. H., Kumar, P., Tripathi, V. y Ruokolainen, J. (2021). Wastewater treatment and reuse: a review of its applications and health implications. Water, Air & Soil Pollution, 232(5): 208. https://doi.org/10.1007/s11270-021-05154-8. DOI: https://doi.org/10.1007/s11270-021-05154-8

Khan, H. K., Rehman, M. Y. A. y Malik, R. N. (2020). Fate and toxicity of pharmaceuticals in water environment: an insight on their occurrence in South Asia. Journal of Environmental Management, 271: 111030. https://doi.org/10.1016/j.jenvman.2020.111030. DOI: https://doi.org/10.1016/j.jenvman.2020.111030

Khan, S. A., Siddiqui, M. F. y Khan, T. A. (2020). Synthesis of poly(methacrylic acid)/montmorillonite hydrogel nanocomposite for efficient adsorption of amoxicillin and diclofenac from aqueous environment: kinetic, isotherm, reusability, and thermodynamic investigations. ACS Omega, 5(6): 2843-2855. https://doi.org/10.1021/acsomega.9b03617. DOI: https://doi.org/10.1021/acsomega.9b03617

Kobylewski, S. y Jacobson, M. F. (2012). Toxicology of food dyes. International Journal of Occupational and Environmental Health, 18(3): 220-246. https://doi.org/10.1179/1077352512Z.00000000034. DOI: https://doi.org/10.1179/1077352512Z.00000000034

Kulal, P. y Badalamoole, V. (2021). Evaluation of gum ghatti-g-poly(itaconic acid) magnetite nanocomposite as an adsorbent material for water purification. International Journal of Biological Macromolecules, 193: 2232-2242. https://doi.org/10.1016/j.ijbiomac.2021.11.055. DOI: https://doi.org/10.1016/j.ijbiomac.2021.11.055

Liu, Q., Zhong, L.-B., Zhao, Q.-B., Frear, C. y Zheng, Y.-M. (2015). Synthesis of Fe 3 O 4 /polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline. ACS Applied Materials & Interfaces, 7(27): 14573-14583. https://doi.org/10.1021/acsami.5b04598. DOI: https://doi.org/10.1021/acsami.5b04598

Liu, Y., Nie, P. y Yu, F. (2021). Enhanced adsorption of sulfonamides by a novel carboxymethyl cellulose and chitosan-based composite with sulfonated graphene oxide. Bioresource Technology, 320: 124373. https://doi.org/10.1016/j.biortech.2020.124373. DOI: https://doi.org/10.1016/j.biortech.2020.124373

Mahmoud, M. E., El-Ghanam, A. M., Mohamed, R. H. A. y Saad, S. R. (2020). Enhanced adsorption of levofloxacin and ceftriaxone antibiotics from water by assembled composite of nanotitanium oxide/chitosan/nano-bentonite. Materials Science and Engineering: C, 108: 110199. https://doi.org/10.1016/j.msec.2019.110199. DOI: https://doi.org/10.1016/j.msec.2019.110199

Marcelo, L. R., de Gois, J. S., da Silva, A. A. y Cesar, D. V. (2021). Synthesis of iron-based magnetic nanocomposites and applications in adsorption processes for water treatment: a review. Environmental Chemistry Letters, 19(2): 1229-1274. https://doi.org/10.1007/s10311-020-01134-2. DOI: https://doi.org/10.1007/s10311-020-01134-2

Mejía-López, A. C., Ramírez-García, J. J. y Solache-Ríos, M. (2022). Removal of penicillin from wastewater: a short review. Desalination and Water Treatment, 272: 144-155. https://doi.org/10.5004/dwt.2022.28815. DOI: https://doi.org/10.5004/dwt.2022.28815

Mishra, D. (2021). Food colors and associated oxidative stress in chemical carcinogenesis. En Handbook of oxidative stress in cancer: mechanistic aspects, 1-14. Springer Singapore. https://doi.org/10.1007/978-981-15-4501-6_182-1. DOI: https://doi.org/10.1007/978-981-15-4501-6_182-1

Mohammadi, L., Rahdar, A., Khaksefidi, R., Ghamkhari, A., Fytianos, G. y Kyzas, G. Z. (2020). Polystyrene magnetic nanocomposites as antibiotic adsorbents. Polymers, 12(6): 1313. https://doi.org/10.3390/polym12061313. DOI: https://doi.org/10.3390/polym12061313

Mohan, H., Singh Rajput, S., Jadhav, E. B., Sankhala, M. S., Sonone, S. S., Jadhav, S. V. y Kumar, R. (2021). Ecotoxicity, occurrence, and removal of pharmaceuticals and illicit drugs from aquatic systems. Biointerface Research in Applied Chemistry, 11(5): 12530-12546. https://doi.org/10.33263/BRIAC115.1253012546. DOI: https://doi.org/10.33263/BRIAC115.1253012546

Nageeb, M. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater. En Organic pollutants - Monitoring, risk and treatment. InTech. https://doi.org/10.5772/54048. DOI: https://doi.org/10.5772/54048

Nava, L. F., Torres Bernardino, L. y Orozco, I. (2024). Crisis water management in Mexico. En The Palgrave Encyclopedia of sustainable resources and ecosystem resilience, 1-21. Springer International Publishing. https://doi.org/10.1007/978-3-030-67776-3_56-1. DOI: https://doi.org/10.1007/978-3-030-67776-3_56-1

Ofsthun, N. J., Karoor, S. y Suzuki, M. (2008). Hemodialysis membranes. En Advanced membrane technology and applications. https://doi.org/10.1002/9780470276280.ch19. DOI: https://doi.org/10.1002/9780470276280.ch19

Omanović-Mikličanin, E., Badnjević, A., Kazlagić, A. y Hajlovac, M. (2020). Nanocomposites: a brief review. Health and Technology, 10(1): 51-59. https://doi.org/10.1007/s12553-019-00380-x. DOI: https://doi.org/10.1007/s12553-019-00380-x

Pawełczyk, A. (2013). Assessment of health risk associated with persistent organic pollutants in water. Environmental Monitoring and Assessment, 185(1): 497-508. https://doi.org/10.1007/s10661-012-2570-8. DOI: https://doi.org/10.1007/s10661-012-2570-8

Peng, N., Hu, D., Zeng, J., Li, Y., Liang, L. y Chang, C. (2016). Superabsorbent cellulose-clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustainable Chemistry & Engineering, 4(12): 7217-7224. https://doi.org/10.1021/acssuschemeng.6b02178. DOI: https://doi.org/10.1021/acssuschemeng.6b02178

Phoon, B. L., Ong, C. C., Mohamed Saheed, M. S., Show, P.-L., Chang, J.-S., Ling, T. C., Lam, S. S. y Juan, J. C. (2020). Conventional and emerging technologies for removal of antibiotics from wastewater. Journal of Hazardous Materials, 400: 122961. https://doi.org/10.1016/j.jhazmat.2020.122961. DOI: https://doi.org/10.1016/j.jhazmat.2020.122961

Pooja, D., Kumar, P. y Singh, P. (2019). Sensors in water pollutants monitoring: role of material advanced functional materials and sensors. https://doi.org/10.1007/978-981-15-0671-0. DOI: https://doi.org/10.1007/978-981-15-0671-0

Qalyoubi, L., Al-Othman, A. y Al-Asheh, S. (2022). Removal of ciprofloxacin antibiotic pollutants from wastewater using nano-composite adsorptive membranes. Environmental Research, 215: 114182. https://doi.org/10.1016/j.envres.2022.114182. DOI: https://doi.org/10.1016/j.envres.2022.114182

Radu, E. R. y Voicu, S. I. (2022). Functionalized hemodialysis polysulfone membranes with improved hemocompatibility. Polymers, 14(6). MDPI. https://doi.org/10.3390/polym14061130. DOI: https://doi.org/10.3390/polym14061130

Rienzie, R., Ramanayaka, S. y Adassooriya, N. M. (2019). Nanotechnology applications for the removal of environmental contaminants from pharmaceuticals and personal care products. En Pharmaceuticals and personal care products: waste management and treatment technology emerging contaminants and micro pollutants, 279-296. Elsevier. https://doi.org/10.1016/B978-0-12-816189-0.00012-3. DOI: https://doi.org/10.1016/B978-0-12-816189-0.00012-3

Rodríguez de Cossío, A. y Rodríguez Sánchez, R. (2011). Pruebas de laboratorio en atención primaria (II). SEMERGEN - Medicina de Familia, 37(3): 130-135. https://doi.org/10.1016/j.semerg.2010.12.003. DOI: https://doi.org/10.1016/j.semerg.2010.12.003

Roshanfekr Rad, L. y Anbia, M. (2021). Zeolite-based composites for the adsorption of toxic matters from water: a review. Journal of Environmental Chemical Engineering, 9(5): 106088. https://doi.org/10.1016/j.jece.2021.106088. DOI: https://doi.org/10.1016/j.jece.2021.106088

Rosner, M. H., Reis, T., Husain-Syed, F., Vanholder, R., Hutchison, C., Stenvinkel, P., Blankestijn, P. J., Cozzolino, M., Juillard, L., Kashani, K., Kaushik, M., Kawanishi, H., Massy, Z., Sirich, T. L., Zuo, L. y Ronco, C. (2021). Classification of uremic toxins and their role in kidney failure. Clinical Journal of the American Society of Nephrology, 16(12): 1918-1928. https://doi.org/10.2215/CJN.02660221. DOI: https://doi.org/10.2215/CJN.02660221

Rostamian, M., Hosseini, H., Fakhri, V., Talouki, P. Y., Farahani, M., Gharehtzpeh, A. J., Goodarzi, V. y Su, C.-H. (2022). Introducing a bio sorbent for removal of methylene blue dye based on flexible poly(glycerol sebacate)/chitosan/graphene oxide ecofriendly nanocomposites. Chemosphere, 289: 133219. https://doi.org/10.1016/j.chemosphere.2021.133219. DOI: https://doi.org/10.1016/j.chemosphere.2021.133219

Roy, M. y Saha, R. (2021). Dyes and their removal technologies from wastewater: a critical review. En Intelligent environmental data monitoring for pollution management, 127-160. Elsevier. https://doi.org/10.1016/B978-0-12-819671-7.00006-3. DOI: https://doi.org/10.1016/B978-0-12-819671-7.00006-3

Samuel, M. S., John. J, A., Ravikumar, M., Raizada, P., Wan Azelee, N. I., Selvarajan, E. y Selvasembian, R. (2023). Recent progress on the remediation of dyes in wastewater using cellulose-based adsorbents. Industrial Crops and Products, 206: 117590. https://doi.org/10.1016/j.indcrop.2023.117590. DOI: https://doi.org/10.1016/j.indcrop.2023.117590

Saravanan, A., Senthil Kumar, P., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P. R. y Reshma, B. (2021). Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere, 280. https://doi.org/10.1016/j.chemosphere.2021.130595. DOI: https://doi.org/10.1016/j.chemosphere.2021.130595

Sarojini, G., Babu, S. V. y Rajasimman, M. (2022). Adsorptive potential of iron oxide based nanocomposite for the sequestration of Congo red from aqueous solution. Chemosphere, 287: 132371. https://doi.org/10.1016/j.chemosphere.2021.132371 DOI: https://doi.org/10.1016/j.chemosphere.2021.132371

Sarojini, G., Venkatesh Babu, S., Rajamohan, N. y Rajasimman, M. (2022). Performance evaluation of polymer-marine biomass based bionanocomposite for the adsorptive removal of malachite green from synthetic wastewater. Environmental Research, 204: 112132. https://doi.org/10.1016/j.envres.2021.112132. DOI: https://doi.org/10.1016/j.envres.2021.112132

Schaider, L. A., Rodgers, K. M. y Rudel, R. A. (2017). Review of organic wastewater compound concentrations and removal in onsite wastewater treatment systems. Environmental Science and Technology, 51(13): 7304-7317. American Chemical Society. https://doi.org/10.1021/acs.est.6b04778. DOI: https://doi.org/10.1021/acs.est.6b04778

Senguttuvan, S., Janaki, V., Senthilkumar, P. y Kamala-Kannan, S. (2022). Polypyrrole/zeolite composite – A nanoadsorbent for reactive dyes removal from synthetic solution. Chemosphere, 287: 132164. https://doi.org/10.1016/j.chemosphere.2021.132164. DOI: https://doi.org/10.1016/j.chemosphere.2021.132164

Shamsudin, M. S., Azha, S. F. y Ismail, S. (2022). A review of diclofenac occurrences, toxicology, and potential adsorption of clay-based materials with surfactant modifier. Journal of Environmental Chemical Engineering, 10(3): 107541. https://doi.org/10.1016/j.jece.2022.107541. DOI: https://doi.org/10.1016/j.jece.2022.107541

Shao, G., Zang, Y. y Hinds, B. J. (2019). TiO2 nanowires based system for urea photodecomposition and dialysate regeneration. ACS Applied Nano Materials, 2(10): 6116-6123. https://doi.org/10.1021/acsanm.9b00709. DOI: https://doi.org/10.1021/acsanm.9b00709

Singh, A., Mittal, A. y Jangid, N. K. (2020). Toxicology of dyes, 50-69. https://doi.org/10.4018/978-1-7998-0311-9.ch003. DOI: https://doi.org/10.4018/978-1-7998-0311-9.ch003

Singh, J., Yadav, P., Pal, A. K. y Mishra, V. (2020). Water pollutants: origin and status, 5-20. https://doi.org/10.1007/978-981-15-0671-0_2. DOI: https://doi.org/10.1007/978-981-15-0671-0_2

Soni, R., Chandra, D., Lourdes, S., Jaspal, M.-O. y Chauhan, S. (2023). Current status of fresh water microbiology. 1a ed. Springer Singapore. https://doi.org/10.1007/978-981-99-5018-8. DOI: https://doi.org/10.1007/978-981-99-5018-8

Sripriya, L., Vijayalakshmi, M., Sumathy, R. y Sharmila, J. (2014). The impact of textile dyes on the biochemistry and histology of liver, a freshwater fish, tilapia, Oreochromis mossambicus (PETERS.). International Journal of Pharma and Bio Sciences, 5: 271-298.

Sun, S., Jiang, T., Lin, Y., Song, J., Zheng, Y. y An, D. (2020). Characteristics of organic pollutants in source water and purification evaluations in drinking water treatment plants. Science of the Total Environment, 733: 139277. https://doi.org/10.1016/j.scitotenv.2020.139277. DOI: https://doi.org/10.1016/j.scitotenv.2020.139277

Suyal, D. C. y Soni, R. (2021). Bioremediation of environmental pollutants: emerging trends and strategies. In Bioremediation of Environmental Pollutants: Emerging Trends and Strategies. Springer International Publishing. https://doi.org/10.1007/978-3-030-86169-8. DOI: https://doi.org/10.1007/978-3-030-86169-8

Thakur, A., Kumar, A. y Singh, A. (2024). Adsorptive removal of heavy metals, dyes, and pharmaceuticals: carbon-based nanomaterials in focus. Carbon, 217. https://doi.org/10.1016/j.carbon.2023.118621. DOI: https://doi.org/10.1016/j.carbon.2023.118621

Tian, J., Xu, J., Zhu, F., Lu, T., Su, C. y Ouyang, G. (2013). Application of nanomaterials in sample preparation. Journal of Chromatography A, 1300: 2-16. https://doi.org/10.1016/j.chroma.2013.04.010. DOI: https://doi.org/10.1016/j.chroma.2013.04.010

Tyumina, E., Subbotina, M., Polygalov, M., Tyan, S. y Ivshina, I. (2023). Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1200108. DOI: https://doi.org/10.3389/fmicb.2023.1200108

Wang, Y., He, L., Dang, G., Li, H. y Li, X. (2021). Polypyrrole-functionalized magnetic Bi2MoO6 nanocomposites as a fast, efficient and reusable adsorbent for removal of ketoprofen and indomethacin from aqueous solution. Journal of Colloid and Interface Science, 592: 51-65. https://doi.org/10.1016/j.jcis.2021.02.033. DOI: https://doi.org/10.1016/j.jcis.2021.02.033

Warner, A. J., Hathaway-Schrader, J. D., Lubker, R., Davies, C. y Novince, C. M. (2022). Tetracyclines and bone: unclear actions with potentially lasting effects. Bone, 159: 116377. https://doi.org/10.1016/j.bone.2022.116377. DOI: https://doi.org/10.1016/j.bone.2022.116377

Weerakoon, D., Bansal, B., Padhye, L. P., Rachmani, A., James Wright, L., Silyn Roberts, G. y Baroutian, S. (2023). A critical review on current urea removal technologies from water: an approach for pollution prevention and resource recovery. En Separation and purification technology, vol. 314. Elsevier B.V. https://doi.org/10.1016/j.seppur.2023.123652. DOI: https://doi.org/10.1016/j.seppur.2023.123652

Yadav, V. B., Gadi, R. y Kalra, S. (2019). Clay based nanocomposites for removal of heavy metals from water: a review. Journal of Environmental Management, 232: 803-817. https://doi.org/10.1016/j.jenvman.2018.11.120. DOI: https://doi.org/10.1016/j.jenvman.2018.11.120

Yaqoob, A. A., Parveen, T., Umar, K. y Mohamad Ibrahim, M. N. (2020). Role of nanomaterials in the treatment of wastewater: a review. Water, 12(2): 495. https://doi.org/10.3390/w12020495. DOI: https://doi.org/10.3390/w12020495

Zaied, B. K., Rashid, M., Nasrullah, M., Zularisam, A. W., Pant, D. y Singh, L. (2020). A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Science of the Total Environment, 726. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.138095. DOI: https://doi.org/10.1016/j.scitotenv.2020.138095

Zailani, M. Z., Ismail, A. F., Goh, P. S., Abdul Kadir, S. H. S., Othman, M. H. D., Hasbullah, H., Abdullah, M. S., Ng, B. C., Kamal, F. y Mustafar, R. (2021). Immobilizing chitosan nanoparticles in polysulfone ultrafiltration hollow fibre membranes for improving uremic toxins removal. Journal of Environmental Chemical Engineering, 9(6): 106878. https://doi.org/10.1016/j.jece.2021.106878. DOI: https://doi.org/10.1016/j.jece.2021.106878

Zhu, Y., Fan, W., Zhou, T. y Li, X. (2019). Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms. Science of the Total Environment, 678: 253-266. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.04.416. DOI: https://doi.org/10.1016/j.scitotenv.2019.04.416

Artículos similares

También puede {advancedSearchLink} para este artículo.