Caracterización de osteoesferoides para inducir mineralización Ostespheroid caracterization to promote mineralization

Contenido principal del artículo

José Luis Sánchez-Escamilla
Heriberto Abraham Valencia-González
Janeth Serrano-Bello
Febe Carolina Vázquez-Vázquez
Íñigo Gaitán-Salvatella
Marco Antonio Álvarez-Pérez
Silvia Maldonado-Frías
https://orcid.org/0000-0002-8087-8678

Resumen

Este trabajo muestra la obtención de osteoesferoides con la capacidad de formar nódulos mineralizados, puediendo utilizarse como modelos de estudio para probar nanofármacos o nanomateriales. Se realizaron cultivos celulares en suspensión para obtener esferoides de osteoblastos fetales, probando diferentes concentraciones celulares/mL durante 5 días. Se seleccionó la condición donde el diámetro va de 80 a 150 μM para realizar ensayos a 3, 7, 14 y 21 días. La viabilidad celular de los osteoesferoides se cuantificó mediante exclusión con azul tripano y se realizaron ensayos clonogénicos para determinar el efecto del medio mineralizante en la formación de estas estructuras. La integridad de los osteoesferoides se observó por H&E y la formación de nódulos mineralizados fue detectada mediante tinción con alizarina roja. Los resultados muestran osteoesferoides regulares sin coagregados a una concentración de 5 x 102 células /mL y viables por arriba del 70% a los 7 días de formación. Los ensayos clonogénicos no muestran diferencias significativas en morfología ni el número de colonias entre el control y el medio para inducir mineralización. Las tinciones con H&E dejan ver núcleos y citoplasma definido a los 3, 7 y 14 días, y a los 7 y 14 días la tinción con alizarina roja sugiere que están formando deposiciones de calcio. 

Detalles del artículo

Cómo citar
Sánchez-Escamilla, J. L., Valencia-González, H. A., Serrano-Bello, J., Vázquez-Vázquez, F. C., Gaitán-Salvatella, Íñigo, Álvarez-Pérez, M. A., & Maldonado-Frías, S. (2024). Caracterización de osteoesferoides para inducir mineralización: Ostespheroid caracterization to promote mineralization. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 18(34), e69829. https://doi.org/10.22201/ceiich.24485691e.2025.34.69829
Sección
Artículos de investigación

Citas

Achilli, Toni-Marie, Julia Meyer y Jeffrey R. Morgan. (2012). Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opinion on Biological Therapy, 12(10): 1347-60. https://doi.org/10.1517/14712598.2012.707181.

Akins, Robert E., Danielle Rockwood, Karyn G. Robinson, Daniel Sandusky, John Rabolt y Christian Pizarro. (2010). Three-dimensional culture alters primary cardiac cell phenotype. Tissue Engineering. Part A, 16(2): 629-41. https://doi.org/10.1089/ten.tea.2009.0458.

Antoni, Delphine, Hélène Burckel, Elodie Josset y Georges Noel. (2015). Three-dimensional cell culture: a breakthrough in vivo. International Journal of Molecular Sciences, 16(3): 5517-27. https://doi.org/10.3390/ijms16035517.

Baptista, Leandra Santos. (2018). Spheroids of stem cells as endochondral templates for improved bone engineering. Frontiers in Bioscience, 23(10): 1969-86. https://doi.org/10.2741/4683.

Berthiaume, François, Timothy J. Maguire y Martin L. Yarmush. (2011). Tissue engineering and regenerative medicine: history, progress, and challenges. Annual Review of Chemical and Biomolecular Engineering, 2(1): 403-30. https://doi.org/10.1146/annurev-chembioeng-061010-114257.

Cappariello, Alfredo, Marco Ponzetti y Nadia Rucci. (2016). The ‘soft’ side of the bone: unveiling its endocrine functions. Hormone Molecular Biology and Clinical Investigation, 28(1): 5-20. https://doi.org/10.1515/hmbci-2016-0009.

Cesarz, Zoe y Kenichi Tamama. (2016). Spheroid culture of mesenchymal stem cells. Stem Cells International, (2016): 9176357. https://doi.org/10.1155/2016/9176357.

Cui, X., Y. Hartanto y H. Zhang. (2017). Advances in multicellular spheroids formation. Journal of the Royal Society Interface, 14(127): 20160877. https://doi.org/10.1098/rsif.2016.0877.

Curcio, Efrem, Simona Salerno, Giuseppe Barbieri, Loredana De Bartolo, Enrico Drioli y Augustinus Bader. (2007). Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials, 28(36): 5487-97. https://doi.org/10.1016/j.biomaterials.2007.08.033.

Edmondson, Rasheena, Jessica Jenkins Broglie, Audrey F. Adcock y Liju Yang. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and Drug Development Technologies, 12(4): 207-18. https://doi.org/10.1089/adt.2014.573.

Fennema, Eelco, Nicolas Rivron, Jeroen Rouwkema, Clemens Van Blitterswijk y Jan De Boer. (2013). Spheroid culture as a tool for creating 3D complex tissues. Trends in Biotechnology, 31(2): 108-15. https://doi.org/10.1016/j.tibtech.2012.12.003.

Florencio-Silva, Rinaldo, Gisela Rodrigues da Silva Sasso, Estela Sasso-Cerri, Manuel Jesus Simões y Paulo Sérgio Cerri. (2015). Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Research International, 2015: 421746. https://doi.org/10.1155/2015/421746.

Gionet-Gonzales, Marissa A. y J. Kent Leach. (2018). Engineering principles for guiding spheroid function in the regeneration of bone, cartilage, and skin. Biomedical Materials. 13(3): 034109. Bristol, England. https://doi.org/10.1088/1748-605X/aab0b3.

Gurumurthy, Bhuvaneswari, Patrick C. Bierdeman y Amol V. Janorkar. (2017). Spheroid model for functional osteogenic evaluation of human adipose derived stem cells. Journal of Biomedical Materials Research Part A, 105(4): 1230-36. https://doi.org/10.1002/jbm.a.35974.

Hart, Nicolas H., Robert U. Newton, Jocelyn Tan, Timo Rantalainen, Paola Chivers, Aris Siafarikas y Sophia Nimphius. (2020). Biological basis of bone strength: anatomy, physiology and measurement. Journal of Musculoskeletal & Neuronal Interactions, 20(3): 347-71.

Henry, James P. y Bruno Bordoni. (2024). Histology, osteoblasts. StatPearls. Treasure Island (FL): StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK557792/.

Hu, Guoqing y Dongqing Li. (2007). Three-dimensional modeling of transport of nutrients for multicellular tumor spheroid culture in a microchannel. Biomedical Microdevices, 9(3): 315-23. https://doi.org/10.1007/s10544-006-9035-1.

Jalali, Morteza, Francesca Yvonne Louise Saldanha y Mehdi Jalali. (2017). Basic science methods for clinical researchers. Academic Press.

Jauković, Aleksandra, Desislava Abadjieva, Drenka Trivanović, Elena Stoyanova, Milena Kostadinova, Shina Pashova, Snejana Kestendjieva et al. (2020). Specificity of 3D MSC spheroids microenvironment: impact on MSC behavior and properties. Stem Cell Reviews and Reports, 16(5): 853-75. https://doi.org/10.1007/s12015-020-10006-9.

Kapałczyńska, Marta, Tomasz Kolenda, Weronika Przybyła, Maria Zajączkowska, Anna Teresiak, Violetta Filas, Matthew Ibbs, Renata Bliźniak, Łukasz Łuczewski y Katarzyna Lamperska. (2018). 2D and 3D cell cultures – A comparison of different types of cancer cell cultures. Archives of Medical Science: AMS, 14(4): 910-19. https://doi.org/10.5114/aoms.2016.63743.

Katsimbri, P. (2017). The biology of normal bone remodelling. European Journal of Cancer Care, 26(6): e12740. https://doi.org/10.1111/ecc.12740.

Langdon, Simon P. (2003). Basic principles of cancer cell culture. En Simon P. Langdon, Cancer cell culture, 88: 3-16. New Jersey: Humana Press. https://doi.org/10.1385/1-59259-406-9:3.

Langhans, Sigrid A. (2018). Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Frontiers in Pharmacology, 9(enero): 6. https://doi.org/10.3389/fphar.2018.00006.

Laschke, Matthias W. y Michael D. Menger. (2017). Life is 3D: boosting spheroid function for tissue engineering. Trends in Biotechnology, 35(2): 133-44. https://doi.org/10.1016/j.tibtech.2016.08.004.

Lin, Ruei‐Zhen y Hwan‐You Chang. (2008). Recent advances in three‐dimensional multicellular spheroid culture for biomedical research. Biotechnology Journal, 3(9-10): 1172-84. https://doi.org/10.1002/biot.200700228.

Maliszewska-Olejniczak, Kamila, Klaudia K. Brodaczewska, Zofia F. Bielecka, Wojciech Solarek, Anna Kornakiewicz, Cezary Szczylik, Camillo Porta y Anna M. Czarnecka. (2019). Development of extracellular matrix supported 3D culture of renal cancer cells and renal cancer stem cells. Cytotechnology, 71(1): 149-63. https://doi.org/10.1007/s10616-018-0273-x.

McKee, Christina y G. Rasul Chaudhry. (2017). Advances and challenges in stem cell culture. Colloids and Surfaces B: Biointerfaces, 159(noviembre): 62-77. https://doi.org/10.1016/j.colsurfb.2017.07.051.

Muguruma, Masako, Saeko Teraoka, Kana Miyahara, Ai Ueda, Mariko Asaoka, Miki Okazaki, Takahiko Kawate, Masahiko Kuroda, Yohei Miyagi y Takashi Ishikawa. (2020). Differences in drug sensitivity between two-dimensional and three-dimensional culture systems in triple-negative breast cancer cell lines. Biochemical and Biophysical Research Communications, 533(3): 268-74. https://doi.org/10.1016/j.bbrc.2020.08.075.

Ponzetti, Marco y Nadia Rucci. (2021). Osteoblast differentiation and signaling: established concepts and emerging topics. International Journal of Molecular Sciences, 22(13): 6651. https://doi.org/10.3390/ijms22136651.

Poornima, Kolluri, Arul Prakash Francis, Muddasarul Hoda, Mohamed Ahmed Eladl, Srividya Subramanian, Vishnu Priya Veeraraghavan, Mohamed El-Sherbiny et al. (2022). Implications of three-dimensional cell culture in cancer therapeutic research. Frontiers in Oncology, 12(mayo): 891673. https://doi.org/10.3389/fonc.2022.891673.

Roi, Alexandra, Lavinia Cosmina Ardelean, Ciprian Ioan Roi, Eugen-Radu Boia, Simina Boia y Laura-Cristina Rusu. (2019). Oral bone tissue engineering: advanced biomaterials for cell adhesion, proliferation and differentiation. Materials, 12(14): 2296. https://doi.org/10.3390/ma12142296.

Rosenberg, Nahum, Orit Rosenberg y Michael Soudry. (2012). Osteoblasts in bone physiology – Mini review. Rambam Maimonides Medical Journal, 3(2): e0013. https://doi.org/10.5041/RMMJ.10080.

Ryu, Na-Eun, Soo-Hong Lee y Hansoo Park. (2019). Spheroid culture system methods and applications for mesenchymal stem cells. Cells, 8(12): 1620. https://doi.org/10.3390/cells8121620.

Sánchez Escamilla, José Luis. (2021). Esferoides: unidades biológicas para la regeneración ósea. Tesis para obtener el título de cirujano dentista. Facultad de Odontología, Universidad Nacional Autónoma de México.

Seeman, Ego y Pierre D. Delmas. (2006). Bone quality – The material and structural basis of bone strength and fragility. New England Journal of Medicine, 354(21): 2250-61. https://doi.org/10.1056/NEJMra053077.

Senrung, Anna, Sakshi Lalwani, Divya Janjua, Tanya Tripathi, Jasleen Kaur, Netra Ghuratia, Nikita Aggarwal et al. (2023). 3D tumor spheroids: morphological alterations a yardstick to anti-cancer drug response. In vitro Models, 2(6): 219-48. https://doi.org/10.1007/s44164-023-00059-8.

Soares, Carolina Pontes, Victor Midlej, Maria Eduarda Weschollek de Oliveira, Marlene Benchimol, Manoel Luis Costa y Cláudia Mermelstein. (2012). 2D and 3D-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression. PLoS ONE, 7(5): e38147. https://doi.org/10.1371/journal.pone.0038147.

Whitesides, George M. y Bartosz Grzybowski. (2002). Self-assembly at all scales. Science, 295(5564): 2418-21. https://doi.org/10.1126/science.1070821.