La química verde en la síntesis de nanopartículas y sus propiedades antibacterianas

Contenido principal del artículo

Rafael Álvarez-Chimal
https://orcid.org/0000-0001-7022-5959
Jesús Ángel Arenas-Alatorre
https://orcid.org/0000-0002-5710-4914
Francisco Marichi-Rodríguez
https://orcid.org/0009-0007-2541-4399
Rodrigo Correa-Prado
https://orcid.org/0009-0005-0909-8272
Marco Antonio Álvarez-Pérez
https://orcid.org/0000-0002-1895-262X

Resumen

Lo primero en mente cuando escuchamos sobre nanopartículas es su tamaño extremadamente pequeño o su amplia gama de aplicaciones, pero pocas veces nos enfocamos en su síntesis, siendo esto lo más importante, porque desde ahí se determinan sus tamaños y propiedades. Para sintetizarlas hay muchos procedimientos, desde los que requieren el uso de reactivos peligrosos o tiempos largos hasta los amigables con el ambiente, siendo la química verde uno de esos métodos, el cual está tomando relevancia por su facilidad, rapidez y sustentabilidad. Este enfoque utiliza recursos naturales y compuestos bioactivos actuando como agentes reductores, estabilizadores y de recubrimiento, haciendo el proceso más eficiente en prácticamente un solo paso. Entre las diversas propiedades comprobadas a las nanopartículas está su capacidad antibacteriana, demostrando que, al interactuar con las bacterias, desencadenan procesos que culminan con la eliminación del microrganismo. Este artículo da una perspectiva general sobre la química verde y cómo es utilizada para sintetizar nanopartículas, profundizando en los diferentes recursos disponibles para este procedimiento, los factores que influyen en la síntesis, además de las propiedades antibacterianas atribuidas a estos nanomateriales. 

Detalles del artículo

Cómo citar
Álvarez-Chimal, R., Arenas-Alatorre, J. Ángel, Marichi-Rodríguez, F., Correa-Prado, R., & Álvarez-Pérez, M. A. (2024). La química verde en la síntesis de nanopartículas y sus propiedades antibacterianas. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 18(34), 1e-20e. https://doi.org/10.22201/ceiich.24485691e.2025.34.69826
Sección
Artículos de revisión

Citas

Abdal Dayem, Ahmed, Mohammed Hossain, Soo Lee, Kyeongseok Kim, Subbroto Saha, Gwang-Mo Yang, Hye Choi y Ssang-Goo Cho. (2017).The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. International Journal of Molecular Sciences, 18(1): 120. https://doi.org/10.3390/ijms18010120.

Agarwal, Happy, S. Venkat Kumar y S. Rajeshkumar. (2017). A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resource-Efficient Technologies, 3(4): 406-13. https://doi.org/10.1016/j.reffit.2017.03.002.

Ali, Jawad, Rabia Irshad, Baoshan Li, Kamran Tahir, Aftab Ahmad, Muhammad Shakeel, Naeem Ullah Khan y Zia Ul Haq Khan. (2018). Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications. Journal of Photochemistry and Photobiology B: Biology, 183: 349-56, junio. https://doi.org/10.1016/j.jphotobiol.2018.05.006.

Álvarez-Chimal, Rafael, Víctor I. García-Pérez, Marco Antonio Álvarez-Pérez, Rosario Tavera-Hernández, Lorena Reyes-Carmona, Miryam Martínez-Hernández y Jesús Ángel Arenas-Alatorre. (2022). Influence of the particle size on the antibacterial activity of green synthesized zinc oxide nanoparticles using dysphania ambrosioides extract, supported by molecular docking analysis. Arabian Journal of Chemistry, 15(6): 103804. https://doi.org/10.1016/j.arabjc.2022.103804.

Álvarez-Chimal, Rafael, Víctor Irahuen García-Pérez, Marco Antonio Álvarez-Pérez y Jesús Ángel Arenas-Alatorre. (2021). Green synthesis of ZnO nanoparticles using a dysphania ambrosioides extract. Structural characterization and antibacterial properties. Materials Science and Engineering: C, 118: 111540, enero. https://doi.org/10.1016/j.msec.2020.111540.

Anees, Arshi, Rishil Gupta, P. V. Phanindra, Oluwatoyin Adenike Fabiyi, Uday Kumar Thera, Tesleem Taye Bello y Faheem Ahmad. (2024). Green synthesis of nanoparticles and applications. Advanced Nanotechnology in Plants, 89-122. Boca Raton: CRC Press. https://doi.org/10.1201/b23308-7.

Bayda, Samer, Muhammad Adeel, Tiziano Tuccinardi, Marco Cordani y Flavio Rizzolio. (2019). The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules, 25(1): 112. https://doi.org/10.3390/molecules25010112.

Beveridge, Terry J. (1999). Structures of Gram-negative cell walls and their derived membrane vesicles. Journal of Bacteriology, 181(16): 4725-33. https://doi.org/10.1128/JB.181.16.4725-4733.1999.

Borzabadi-Farahani, Ali, Ebrahim Borzabadi y Edward Lynch. (2014). Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontologica Scandinavica, 72(6): 413-17. https://doi.org/10.3109/00016357.2013.859728.

Carrillo-López, Luis M., Ramón M. Soto-Hernández, Hilda A. Zavaleta-Mancera y Alfredo R. Vilchis-Néstor. (2016). Study of the performance of the organic extracts of Chenopodium ambrosioides for Ag nanoparticle synthesis. Journal of Nanomaterials, 2016: 1-13. https://doi.org/10.1155/2016/4714162.

Carrouel, Florence, Stephane Viennot, Livia Ottolenghi, Cedric Gaillard y Denis Bourgeois. (2020). Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: a review of the current situation. Nanomaterials, 10(1): 140. https://doi.org/10.3390/nano10010140.

Chiriac, V., D. N. Stratulat, G. Calin, S. Nichitus, V. Burlui, C. Stadoleanu, M. Popa y I. M. Popa. (2016). Antimicrobial property of zinc based nanoparticles. IOP Conference Series: Materials Science and Engineering, 133(junio): 012055. https://doi.org/10.1088/1757-899X/133/1/012055.

Dada, Adewumi O., Folahan A. Adekola, Oluyomi S. Adeyemi, Oluwasesan M. Bello, Adetunji C. Oluwaseun, Oluwakemi J. Awakan, y Femi-Adepoju A. Grace. (2018). Exploring the effect of operational factors and characterization imperative to the synthesis of silver nanoparticles. Silver Nanoparticles – Fabrication, Characterization and Applications. https://doi.org/10.5772/intechopen.76947.

Dahoumane, Si Amar, Claude Yéprémian, Chakib Djédiat, Alain Couté, Fernand Fiévet, Thibaud Coradin y Roberta Brayner. (2014). A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. Journal of Nanoparticle Research, 16(10): 2607. https://doi.org/10.1007/s11051-014-2607-8.

Darby, Elizabeth M., Eleftheria Trampari, Pauline Siasat, Maria Solsona Gaya, Ilyas Alav, Mark A. Webber y Jessica M. A. Blair. (2023). Molecular mechanisms of antibiotic resistance revisited. Nature Reviews Microbiology, 21(5): 280-95. https://doi.org/10.1038/s41579-022-00820-y.

Dauthal, Preeti y Mausumi Mukhopadhyay. (2016). Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Industrial & Engineering Chemistry Research, 55(36): 9557-77. https://doi.org/10.1021/acs.iecr.6b00861.

Deljou, Ali y Samad Goudarzi. (2016). Green extracellular synthesis of the silver nanoparticles using thermophilic bacillus Sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iranian Journal of Biotechnology, 14(2): 25-32. https://doi.org/10.15171/ijb.1259.

Dutta, R.K., Bhavani P. Nenavathu, Mahesh K. Gangishetty y A.V. R. Reddy. (2012). Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids and Surfaces B: Biointerfaces, 94(junio): 143-50. https://doi.org/10.1016/j.colsurfb.2012.01.046.

Eaimsumang, Srisin, Sujitra Wongkasemjit, Sangobtip Pongstabodee, Siwaporn Meejoo Smith, Sukritthira Ratanawilai, Nuwong Chollacoop y Apanee Luengnaruemitchai. (2019). Effect of synthesis time on morphology of CeO2 nanoparticles and Au/CeO2 and their activity in oxidative steam reforming of methanol. Journal of Rare Earths, 37(8): 819-28. https://doi.org/10.1016/j.jre.2018.11.010.

Geetha, Karra, Mounika Yekkala y R. Shireesh Kiran. (2024). A review of revolutionizing green synthesis of nanoparticles in pharmacy and healthcare. Journal of Pharmaceutical Research International, 36(5): 25-40. https://doi.org/10.9734/jpri/2024/v36i57515.

Ghasemi, Saeed, Sara Dabirian, Faezeh Kariminejad, Diba Eghbali Koohi, Mehran Nemattalab, Sina Majidimoghadam, Ehsan Zamani y Fatemeh Yousefbeyk. (2024). Process optimization for green synthesis of silver nanoparticles using rubus discolor leaves extract and its biological activities against multi-drug resistant bacteria and cancer cells. Scientific Reports, 14(1): 4130. https://doi.org/10.1038/s41598-024-54702-9.

Gupta, Deepshikha, Anuj Boora, Amisha Thakur y Tejendra K. Gupta. (2023). Green and sustainable synthesis of nanomaterials: recent advancements and limitations. Environmental Research, 231(agosto): 116316. https://doi.org/10.1016/j.envres.2023.116316.

Haji, Sayran Hamad, Fattma A. Ali y Safaa Toma Hanna Aka. (2022). Synergistic antibacterial activity of silver nanoparticles biosynthesized by carbapenem-resistant Gram-negative bacilli. Scientific Reports, 12(1): 15254. https://doi.org/10.1038/s41598-022-19698-0.

Handayani, W., A. S. Ningrum y C. Imawan. (2020). The role of pH in synthesis silver nanoparticles using pometia pinnata (matoa) leaves extract as bioreductor. Journal of Physics: Conference Series, 1428(1): 012021. https://doi.org/10.1088/1742-6596/1428/1/012021.

Hebbalalu, Deepika, Jacob Lalley, Mallikarjuna N. Nadagouda y Rajender S. Varma. (2013). Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and Microwaves. ACS Sustainable Chemistry & Engineering, 1(7): 703-12. https://doi.org/10.1021/sc4000362.

Ijaz, Irfan, Ezaz Gilani, Ammara Nazir y Aysha Bukhari. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13(3): 223-45. https://doi.org/10.1080/17518253.2020.1802517.

Ipe, Deepak S., P. T. Sudheesh Kumar, Robert M. Love y Stephen M. Hamlet. (2020). Silver nanoparticles at biocompatible dosage synergistically increases bacterial susceptibility to antibiotics. Frontiers in Microbiology, 11(mayo). https://doi.org/10.3389/fmicb.2020.01074.

Jiang, Shengjie, Kaili Lin y Ming Cai. (2020). ZnO nanomaterials: current advancements in antibacterial mechanisms and applications. Frontiers in Chemistry, 8 (July). https://doi.org/10.3389/fchem.2020.00580.

Kazemi, S., A. Hosseingholian, S.D. Gohari, F. Feirahi, F. Moammeri, G. Mesbahian, Z.S. Moghaddam y Q. Ren. (2023). Recent advances in green synthesized nanoparticles: from production to application. Materials Today Sustainability, 24(diciembre): 100500. https://doi.org/10.1016/j.mtsust.2023.100500.

Kim, Hyun-seok, Yu Seon Seo, Kyeounghak Kim, Jeong Woo Han, Youmie Park y Seonho Cho. (2016). Concentration effect of reducing agents on green synthesis of gold nanoparticles: size, morphology, and growth mechanism. Nanoscale Research Letters, 11(1): 230. https://doi.org/10.1186/s11671-016-1393-x.

Koul, Bhupendra, Anil Kumar Poonia, Dhananjay Yadav y Jun-O Jin. (2021). Microbe-mediated biosynthesis of nanoparticles: applications and future prospects. Biomolecules, 11(6): 886. https://doi.org/10.3390/biom11060886.

Król, A., P. Pomastowski, K. Rafińska, V. Railean-Plugaru y B. Buszewski. (2017). Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science, 249: 37-52, noviembre. https://doi.org/10.1016/j.cis.2017.07.033.

Kučuk, Nika, Mateja Primožič, Željko Knez y Maja Leitgeb. (2023). Sustainable biodegradable biopolymer-based nanoparticles for healthcare applications. International Journal of Molecular Sciences, 24(4): 3188. https://doi.org/10.3390/ijms24043188.

Kumar, Sanjay, Pulak Bhushan y Shantanu Bhattacharya. (2018). Fabrication of nanostructures with bottom-up approach and their utility in diagnostics, therapeutics, and others. PubMed Central, 167-198. https://doi.org/10.1007/978-981-10-7751-7_8.

Kuppusamy, Palaniselvam, Mashitah M. Yusoff, Gaanty Pragas Maniam y Natanamurugaraj Govindan. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharmaceutical Journal, 24(4): 473-84. https://doi.org/10.1016/j.jsps.2014.11.013.

Linklater, Denver P., Vladimir A. Baulin, Xavier Le Guével, Jean‐Baptiste Fleury, Eric Hanssen, The Hong Phong Nguyen, Saulius Juodkazis et al. (2020). Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes. Advanced Materials, 32(52). https://doi.org/10.1002/adma.202005679.

Majumdar, Moumita, Saurabh Shivalkar, Ayantika Pal, Madan L. Verma, Amaresh Kumar Sahoo y Dijendra Nath Roy. (2020). Nanotechnology for enhanced bioactivity of bioactive compounds. Biotechnological Production of Bioactive Compounds, 433-66. Elsevier. https://doi.org/10.1016/B978-0-444-64323-0.00015-1.

Makarov, V. V., A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky y N. O. Kalinina. (2014). ‘Green’ nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6(1): 35-44. https://doi.org/10.32607/20758251-2014-6-1-35-44.

Messaoudi, Omar y Mourad Bendahou. (2020). Biological synthesis of nanoparticles using endophytic microorganisms: current development. Nanotechnology and the Environment. IntechOpen. https://doi.org/10.5772/intechopen.93734.

Mo, Lixin, Zhenxin Guo, Li Yang, Qingqing Zhang, Yi Fang, Zhiqing Xin, Zheng Chen, Kun Hu, Lu Han y Luhai Li. (2019). Silver nanoparticles based ink with moderate sintering in flexible and printed electronics. International Journal of Molecular Sciences, 20(9): 2124. https://doi.org/10.3390/ijms20092124.

Moradi, Farhad, Arshin Ghaedi, Zahra Fooladfar y Aida Bazrgar. (2023). Recent advance on nanoparticles or nanomaterials with anti-multidrug resistant bacteria and anti-bacterial biofilm properties: a systematic review. Heliyon, 9(11): e22105. https://doi.org/10.1016/j.heliyon.2023.e22105.

Mukherjee, Priyabrata, Absar Ahmad, Deendayal Mandal, Satyajyoti Senapati, Sudhakar R. Sainkar, Mohammad I. Khan, Renu Parishcha et al. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Letters, 1(10): 515-19. https://doi.org/10.1021/nl0155274.

Naikoo, Gowhar A., Mujahid Mustaqeem, Israr U. Hassan, Tasbiha Awan, Fareeha Arshad, Hiba Salim y Ahsanulhaq Qurashi. (2021). Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: a critical review. Journal of Saudi Chemical Society, 25(9): 101304. https://doi.org/10.1016/j.jscs.2021.101304.

Nasrollahzadeh, Mahmoud, Monireh Atarod, Mohaddeseh Sajjadi, S. Mohammad Sajadi y Zahra Issaabadi. (2019). Plant-mediated green synthesis of nanostructures: mechanisms, characterization, and applications. Interface Science and Technology, 28: 199-322. https://doi.org/10.1016/B978-0-12-813586-0.00006-7.

Nava, O. J., P. A. Luque, C. M. Gómez-Gutiérrez, A. R. Vilchis-Néstor, A. Castro-Beltrán, M.L. Mota-González y A. Olivas. (2017). Influence of Camellia sinensis extract on zinc oxide nanoparticle green synthesis. Journal of Molecular Structure, 1134: 121-25, abril. https://doi.org/10.1016/j.molstruc.2016.12.069.

Navya, P. N. y Hemant Kumar Daima. (2016). Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence, 3(1): 1. https://doi.org/10.1186/s40580-016-0064-z.

Paul T. Anastas, John Charles Warner. (1998). Green chemistry: theory and practice. Reino Unido: Oxford University Press.

Rana, Anu, Krishna Yadav y Sheeja Jagadevan. (2020). A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity. Journal of Cleaner Production, 272: 122880, noviembre. https://doi.org/10.1016/j.jclepro.2020.122880.

Reyes-Carmona, Lorena, Enrique Camps, Enrique Campos-González, Gabriela Mercado-Celis, Alejandra Cervantes-Garduño, Ezequiel A. Pérez-Ibarra, Rafael Álvarez-Chimal, Sandra E. Rodil y Argelia Almaguer-Flores. (2023). Antimicrobial evaluation of bismuth subsalicylate nanoparticles synthesized by laser ablation against clinical oral microorganisms. Optics & Laser Technology, 158: 108930, febrero. https://doi.org/10.1016/j.optlastec.2022.108930.

Riddin, T. L., M. Gericke y C. G. Whiteley. (2006). Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. Sp. Lycopersici using response surface methodology. Nanotechnology, 17(14): 3482-89. https://doi.org/10.1088/0957-4484/17/14/021.

Saim, Alex Kwasi, Faustin Nartey Kumah y Millicent Nkrumah Oppong. (2021). Extracellular and intracellular synthesis of gold and silver nanoparticles by living plants: a review. Nanotechnology for Environmental Engineering, 6(1): 1. https://doi.org/10.1007/s41204-020-00095-9.

Singh, Anirudh, Pavan Kumar Gautam, Arushi Verma, Vishal Singh, Pingali M. Shivapriya, Saurabh Shivalkar, Amaresh Kumar Sahoo y Sintu Kumar Samanta. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnology Reports, 25: e00427, marzo. https://doi.org/10.1016/j.btre.2020.e00427.

Singh, Jagpreet, Tanushree Dutta, Ki-Hyun Kim, Mohit Rawat, Pallabi Samddar y Pawan Kumar. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16(1): 84. https://doi.org/10.1186/s12951-018-0408-4.

Singh, Priyanka, Yu-Jin Kim, Dabing Zhang y Deok-Chun Yang. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7): 588-99. https://doi.org/10.1016/j.tibtech.2016.02.006.

Sirelkhatim, Amna, Shahrom Mahmud, Azman Seeni, Noor Haida Mohamad Kaus, Ling Chuo Ann, Siti Khadijah Mohd Bakhori, Habsah Hasan y Dasmawati Mohamad. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3): 219-42. https://doi.org/10.1007/s40820-015-0040-x.

Sivakumar, Padmanaban, Minjong Lee, Yoon-Seok Kim y Min Suk Shim. (2018). Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles. Journal of Materials Chemistry B, 6(30): 4852-71. https://doi.org/10.1039/C8TB00948A.

Solís-Sandí, Iván, Sara Cordero-Fuentes, Reinaldo Pereira-Reyes, José Roberto Vega-Baudrit, Diego Batista-Menezes y Gabriela Montes de Oca-Vásquez. (2023). Optimization of the biosynthesis of silver nanoparticles using bacterial extracts and their antimicrobial potential. Biotechnology Reports, 40(diciembre): e00816. https://doi.org/10.1016/j.btre.2023.e00816.

Stavinskaya, Oksana, Iryna Laguta, Tetiana Fesenko y Marina Krumova. (2019). Effect of temperature on green synthesis of silver nanoparticles using vitex agnus-castus extract. Chemistry Journal of Moldova, 14(2): 117-21. https://doi.org/10.19261/cjm.2019.636.

Syed, Asad y Absar Ahmad. (2012). Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 97: 27-31, septiembre. https://doi.org/10.1016/j.colsurfb.2012.03.026.

Thanh, Nguyen T. K., N. Maclean y S. Mahiddine. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114(15): 7610-30. https://doi.org/10.1021/cr400544s.

Urban-Chmiel, Renata, Agnieszka Marek, Dagmara Stępień-Pyśniak, Kinga Wieczorek, Marta Dec, Anna Nowaczek y Jacek Osek. (2022). Antibiotic resistance in bacteria – A review. Antibiotics, 11(8): 1079. https://doi.org/10.3390/antibiotics11081079.

Usman, Osama, Mirza Muhammad Mohsin Baig, Mujtaba Ikram, Tehreem Iqbal, Saharin Islam, Wajid Syed, Mahmood Basil A. Al-Rawi y Misbah Naseem. (2024). Green synthesis of metal nanoparticles and study their anti-pathogenic properties against pathogens effect on plants and animals. Scientific Reports, 14(1): 11354. https://doi.org/10.1038/s41598-024-61920-8.

Vetchinkina, Elena, Ekaterina Loshchinina, Maria Kupryashina, Andrey Burov, Timofey Pylaev y Valentina Nikitina. (2018). Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. PeerJ, 6: e5237, julio. https://doi.org/10.7717/peerj.5237.

Vijayaram, Seerengaraj, Hary Razafindralambo, Yun-Zhang Sun, Seerangaraj Vasantharaj, Hamed Ghafarifarsani, Seyed Hossein Hoseinifar y Mahdieh Raeeszadeh. (2024). Applications of green synthesized metal nanoparticles – A review. Biological Trace Element Research, 202(1): 360-86. https://doi.org/10.1007/s12011-023-03645-9.

Webster, Thomas J. y Iustin Seil. (2012). Antimicrobial applications of nanotechnology: methods and literature. International Journal of Nanomedicine, 2767, junio. https://doi.org/10.2147/IJN.S24805.

Zhang, Lijie y Thomas J. Webster. (2009). Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today, 4(1): 66-80. https://doi.org/10.1016/j.nantod.2008.10.014.