Nanopartículas viromiméticas para la entrega de ácidos nucleicos en el estudio del parásito Trypanosoma cruzi Viromimetic nanoparticles for nucleic acid delivery in the study of parasite Trypanosoma cruzi
Conteúdo do artigo principal
Resumo
La enfermedad de Chagas, causada por el parásito Trypanosoma cruzi, sigue siendo una patología desatendida con altas tasas de subdiagnóstico y opciones terapéuticas limitadas, especialmente en la fase crónica. A pesar de los avances en biología molecular, el estudio funcional de genes en T. cruzi enfrenta grandes desafíos debido a su diversidad genética y a la falta de herramientas eficientes para la entrega de ácidos nucleicos. En este contexto, las nanopartículas viromiméticas (NPVM) se perfilan como plataformas bioinspiradas, las cuales imitan propiedades estructurales y funcionales de los virus, permitiendo una entrega segura, dirigida y poco inmunogénica de material genético. Se abordan los principios de diseño, características funcionales y aplicaciones biomédicas de las NPVM. Se destaca el caso del sistema viromimético C4BK12 como ejemplo de entrega de oligonucleótidos antisentido en T. cruzi, evidenciado el potencial de estas plataformas como herramientas emergentes para la investigación funcional y el desarrollo de nuevas estrategias terapéuticas dirigidas.
Downloads
Detalhes do artigo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Referências
Alonso-Valenteen, F., S. Pacheco, D. Srinivas, A. Rentsendorj, D. Chu, J. Lubow, J. Sims, T. Miao, S. Mikhael, J. Y. Hwang, R. Abrol y L. K. Medina Kauwe. (2019). HER3-targeted protein chimera forms endosomolytic capsomeres and self-assembles into stealth nucleocapsids for systemic tumor homing of RNA interference in vivo. Nucleic Acids Res, 47(21): 11020-11043. https://doi.org/10.1093/nar/gkz900.
Araya, J. E., A. Cornejo, P. R. Orrego, E. M. Cordero, M. Cortéz, H. Olivares, I. Neira, H. Sagua, J. F. da Silveira, N. Yoshida y J. González. (2008). Calcineurin B of the human protozoan parasite Trypanosoma cruzi is involved in cell invasion. Microbes Infect, 10(8): 892-900. https://doi.org/10.1016/j.micinf.2008.05.003.
Arias, J. L., J. D. Unciti-Broceta, J. Maceira, T. del Castillo, J. Hernández-Quero, S. Magez, M. Soriano y J. A. García-Salcedo. (2015). Nanobody conjugated PLGA nanoparticles for active targeting of African trypanosomiasis. J Control Release, 197: 190-8. https://doi.org/10.1016/j.jconrel.2014.11.002.
Arroyo-Olarte, Rubén D., Ignacio Martínez, Eduardo Luján, Fela Mendlovic, Tzvetanka Dinkova y Bertha Espinoza. (2020). Differential gene expression of virulence factors modulates infectivity of TcI Trypanosoma cruzi strains. Parasitology Research, 119(11): 3803-3815. https://doi.org/10.1007/s00436-020-06891-1.
Bale, Jacob B., Shane Gonen, Yuxi Liu, William Sheffler, Daniel Ellis, Chantz Thomas, Duilio Cascio, Todd O. Yeates, Tamir Gonen, Neil P. King y David Baker. (2016). Accurate design of megadalton-scale two-component icosahedral protein complexes. Science, 353(6297): 389-394. https://doi.org/doi:10.1126/science.aaf8818.
Bhattacharyya, T., N. Murphy y M. A. Miles. (2024). Diversity of Chagas disease diagnostic antigens: successes and limitations. PLoS Negl Trop Dis, 18(10): e0012512. https://doi.org/10.1371/journal.pntd.0012512.
Butterfield, G. L., M. J. Lajoie, H. H. Gustafson, D. L. Sellers, U. Nattermann, D. Ellis, J. B. Bale, S. Ke, G. H. Lenz, A. Yehdego, R. Ravichandran, S. H. Pun, N. P. King y D. Baker. (2017). Evolution of a designed protein assembly encapsulating its own RNA genome. Nature, 552(7685): 415-420. https://doi.org/10.1038/nature25157.
Cárdenas-Guerra, R. E., Martínez, I. y Espinoza, B. (2022). Papel de la enzima nitroreductasa tipo I de Trypanosoma cruzi en el metabolismo de fármacos anti-chagásicos. Revista Mexicana de Industria y Salud, 2(15): 36-42. ISSN: 2594-1445.
Cárdenas-Guerra, R. E., D. S. Moreno-Gutiérrez, O. J. Vargas-Dorantes, B. Espinoza y A. Hernández-García. (2020). Delivery of antisense DNA into pathogenic parasite Trypanosoma cruzi using virus-like protein-based nanoparticles. Nucleic Acid Ther, 30(6): 392-401. https://doi.org/10.1089/nat.2020.0870.
CDC -DPDx- American Trypanosomiasis. https://www.cdc.gov/dpdx/trypanosomiasisamerican/index.html.
DaRocha, W. D., K. Otsu, S. M. Teixeira y J. E. Donelson. (2004). Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma cruzi. Mol Biochem Parasitol, 133(2): 175-86. https://doi.org/10.1016/j.molbiopara.2003.10.005.
De Freitas Oliveira, J. W., M. F. A. da Silva, I. Z. Damasceno, H. A. O. Rocha, A. A. da Silva Júnior y M. S. Silva. (2022). In vitro validation of antiparasitic activity of PLA-nanoparticles of sodium diethyldithiocarbamate against Trypanosoma cruzi. Pharmaceutics, 14(3). https://doi.org/10.3390/pharmaceutics14030497.
De Sousa, A. S., D. Vermeij, A. N. Ramos, Jr. y A. O. Luquetti. (2024). Chagas disease. Lancet, 403(10422): 203-218. https://doi.org/10.1016/s0140-6736(23)01787-7.
Dirección General de Epidemiología. (2022). Tripanosomiasis. SUIVE/DGE / Secretaría de Salud / Estados Unidos Mexicanos 2022. https://epidemiologia.salud.gob.mx/anuario/html/incidencia_enfermedad.html.
DNDi. (2024). Symptoms, transmission, and current treatments for Chagas disease |DNDi https://dndi.org/diseases/chagas/facts/.
Dumonteil, E., H. Desale, W. Tu, N. Hernández-Cuevas, M. Shroyer, K. Goff, P. A. Marx y C. Herrera. (2023). Intra-host Trypanosoma cruzi strain dynamics shape disease progression: the missing link in Chagas disease pathogenesis. Microbiol Spectr, 11(5): e0423622. https://doi.org/10.1128/spectrum.04236-22.
Edwardson, T. G. W. y D. Hilvert. (2019). Virus-inspired function in engineered protein cages. J Am Chem Soc, 141(24): 9432-9443. https://doi.org/10.1021/jacs.9b03705.
Francisco, A. F., S. Jayawardhana, F. Olmo, M. D. Lewis, S. R. Wilkinson, M. C. Taylor y J. M. Kelly. (2020). Challenges in Chagas disease drug development. Molecules, 25(12). https://doi.org/10.3390/molecules25122799.
Gabaldón-Figueira, J. C., N. Martínez-Peinado, E. Escabia, A. Ros-Lucas, E. Chatelain, I. Scandale, J. Gascon, M. J. Pinazo y J. Alonso-Padilla. (2023). State-of-the-art in the drug discovery pathway for Chagas disease: a framework for drug development and target validation. Res Rep Trop Med, 14: 1-19. https://doi.org/10.2147/rrtm.S415273.
Gao, X., J. Ding, Q. Long y C. Zhan. (2021). Virus-mimetic systems for cancer diagnosis and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 13(3): e1692. https://doi.org/10.1002/wnan.1692.
Gupta, A., J. L. Andresen, R. S. Manan y R. Langer. (2021). Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev, 178: 113834. https://doi.org/10.1016/j.addr.2021.113834.
Hashimoto, M., M. Doi, N. Kurebayashi, K. Furukawa, H. Hirawake-Mogi, Y. Ohmiya, T. Sakurai, T. Mita, K. Mikoshiba y T. Nara. (2016). Inositol 1,4,5-trisphosphate receptor determines intracellular Ca(2+) concentration in Trypanosoma cruzi throughout its life cycle. FEBS Open Bio, 6(12): 1178-1185. https://doi.org/10.1002/2211-5463.12126.
Hashimoto, M., T. Nara, H. Hirawake, J. Morales, M. Enomoto y K. Mikoshiba. (2014). Antisense oligonucleotides targeting parasite inositol 1,4,5-trisphosphate receptor inhibits mammalian host cell invasion by Trypanosoma cruzi. Sci Rep, 4: 4231. https://doi.org/10.1038/srep04231.
Hernández-García, A., D. J. Kraft, A. F. Janssen, P. H. Bomans, N. A. Sommerdijk, D. M. Thies-Weesie, M. E. Favretto, R. Brock, F. A. de Wolf, M. W. Werten, P. van der Schoot, M. C. Stuart y R. de Vries. (2014). Design and self-assembly of simple coat proteins for artificial viruses. Nat Nanotechnol, 9(9): 698-702. https://doi.org/10.1038/nnano.2014.169.
Hernández-García, A., M. W. Werten, M. C. Stuart, F. A. de Wolf y R. de Vries. (2012). Coating of single DNA molecules by genetically engineered protein diblock copolymers. Small, 8(22): 3491-501. https://doi.org/10.1002/smll.201200939.
Kanekiyo, M., C. J. Wei, H. M. Yassine, P. M. McTamney, J. C. Boyington, J. R. Whittle, S. S. Rao, W. P. Kong, L. Wang y G. J. Nabel. (2013). Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 499(7456): 102-6. https://doi.org/10.1038/nature12202.
Kole, R., A. R. Krainer y S. Altman. (2012). RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov, 11(2): 125-40. https://doi.org/10.1038/nrd3625.
Li, Yang, Jinyan Lin, Peiyuan Wang, Qiang Luo, Huirong Lin, Yun Zhang, Zhenqing Hou, Jingfeng Liu y Xiaolong Liu. (2019). Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy. ACS Nano, 13(11): 12912-12928. https://doi.org/10.1021/acsnano.9b05425.
Málaga, S. y N. Yoshida. (2001). Targeted reduction in expression of Trypanosoma cruzi surface glycoprotein gp90 increases parasite infectivity. Infect Immun, 69(1): 353-9. https://doi.org/10.1128/iai.69.1.353-359.2001.
Matsuura, Kazunori, Kenta Watanabe, Tsubasa Matsuzaki, Kazuo Sakurai y Nobuo Kimizuka. (2010). Self-assembled synthetic viral capsids from a 24-mer viral peptide fragment. Angew Chem Int Ed, 49(50): 9662-9665. https://doi.org/10.1002/anie.201004606.
Mengarda, A. C., B. Iles, J. P. F. Longo y J. de Moraes. (2023). Recent approaches in nanocarrier-based therapies for neglected tropical diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 15(2): e1852. https://doi.org/10.1002/wnan.1852.
Modrow, S., D. Falke, U. Truyen y H. Schätzl. (2013). Viruses: definition, structure, classification. En Molecular virology, 17-30. https:/doi.org/10.1007/978-3-642-20718-1_2.
Moreno-Gutiérrez, D. S., X. Del Toro-Ríos, N. J. Martínez-Sulvaran, M. B. Pérez-Altamirano y A. Hernéndez-García. (2023). Programming the cellular uptake of protein-based viromimetic nanoparticles for enhanced delivery. Biomacro- molecules, 24(4): 1563-1573. https://doi.org/10.1021/acs.biomac.2c01295.
Moreno-Gutiérrez, D. S., J. Zepeda-Cervantes, L. Vaca y A. Hernéndez-García. (2021). An artificial virus-like triblock protein shows low in vivo humoral immune response and high stability. Mater Sci Eng C Mater Biol Appl, 129: 112348. https://doi.org/10.1016/j.msec.2021.112348.
Muraca, G., M. E. Ruiz, R. C. Gambaro, S. Scioli-Montoto, M. L. Sbaraglini, G. Padula, J. S. Cisneros, C. Y. Chain, V. A. Álvarez, C. Huck-Iriart, G. R. Castro, M. B. Piñero, M. I. Marchetto, C. Alba Soto, G. A. Islan y A. Talevi. (2023). Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies. Beilstein J Nanotechnol, 14: 804-818. https://doi.org/10.3762/bjnano.14.66.
Ni, R., J. Zhou, N. Hossain y Y. Chau. (2016). Virus-inspired nucleic acid delivery system: linking virus and viral mimicry. Adv Drug Deliv Rev, 106(Pt A): 3-26. https://doi.org/10.1016/j.addr.2016.07.005.
Ni, Y., J. Wang, M. Wang, L. Liu, H. Nie, Q. Wang, J. Sun, T. Yue, M. Q. Zhu y J. Wang. (2022). COVID-19-inspired “artificial virus” to combat drug-resistant bacteria by membrane-intercalation- photothermal-photodynamic multistage effects. Chem Eng J, 446: 137322. https://doi.org/10.1016/j.cej.2022.137322.
Niu, Y., M. Yu, S. B. Hartono, J. Yang, H. Xu, H. Zhang, J. Zhang, J. Zou, A. Dexter, W. Gu y C. Yu. (2013). Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv Mater, 25(43): 6233-7. https://doi.org/10.1002/adma.201302737.
Okura, M., J. Fang, M. L. Salto, R. S. Singer, R. Docampo y S. N. Moreno. (2005). A lipid-modified phosphoinositide-specific phospholipase C (TcPI-PLC) is involved in differentiation of trypomastigotes to amastigotes of Trypanosoma cruzi. J Biol Chem, 280(16): 16235-43. https://doi.org/10.1074/jbc.M414535200.
Olmo, F., F. C. Costa, G. S. Mann, M. C. Taylor y J. M. Kelly. (2018). Optimising genetic transformation of Trypanosoma cruzi using hydroxyurea-induced cell-cycle synchronisation. Mol Biochem Parasitol, 226: 34-36. https://doi.org/10.1016/j.molbiopara.2018.07.002.
OPS. (2024). Enfermedad de Chagas - OPS/OMS | Organización Panamericana de la Salud (paho.org). https://www.paho.org/es/temas/enfermedad-chagas.
Orrego, P. R., H. Olivares, E. M. Cordero, A. Bressan, M. Cortez, H. Sagua, I. Neira, J. González, J. F. da Silveira, N. Yoshida y J. E. Araya. (2014). A cytoplasmic new catalytic subunit of calcineurin in Trypanosoma cruzi and its molecular and functional characterization. PLoS Negl Trop Dis, 8(1): e2676. https://doi.org/10.1371/journal.pntd.0002676.
Padmanabhan, P. K., R. B. Polidoro, N. S. Barteneva, R. T. Gazzinelli y B. A. Burleigh. (2014). Transient transfection and expression of foreign and endogenous genes in the intracellular stages of Trypanosoma cruzi. Mol Biochem Parasitol, 198(2): 100-3. https://doi.org/10.1016/j.molbiopara.2015.02.001.
Pérez-Molina, J. A. e I. Molina. (2018). Chagas disease. Lancet, 391(10115): 82-94. https://doi.org/10.1016/s0140-6736(17)31612-4.
Perrault, S. D. y W. M. Shih. (2014). Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano, 8(5): 5132-40. https://doi.org/10.1021/nn5011914.
Punter, M. T., A. Hernández-García, D. J. Kraft, R. de Vries y P. van der Schoot. (2016). Self-assembly dynamics of linear virus-like particles: theory and experiment. J Phys Chem B, 120(26): 6286-97. https://doi.org/10.1021/acs.jpcb.6b02680.
Quijia Quezada, C., C. S. Azevedo, S. Charneau, J. M. Santana, M. Chorilli, M. B. Carneiro e I. M. D. Bastos. (2019). Advances in nanocarriers as drug delivery systems in Chagas disease. Int J Nanomedicine, 14: 6407-6424. https://doi.org/10.2147/ijn.S206109.
Romero, E. L. y M. J. Morilla. (2010). Nanotechnological approaches against Chagas disease. Adv Drug Deliv Rev, 62(4-5): 576-88. https://doi.org/10.1016/j.addr.2009.11.025.
San Francisco, Juan, Iván Barría, Bessy Gutiérrez, Iván Neira, Christian Muñoz, Hernán Sagua, Jorge E. Araya, Juan Carlos Andrade, Aníbal Zailberger, Alejandro Catalán, Francisco Remonsellez, José Luis Vega y Jorge González. (2017). Decreased cruzipain and gp85/trans-sialidase family protein expression contributes to loss of Trypanosoma cruzi trypomastigote virulence. Microbes Infect, 19(1): 55-61. https://doi.org/10.1016/j.micinf.2016.08.003.
Terasaka, N., Y. Azuma y D. Hilvert. (2018). Laboratory evolution of virus-like nucleocapsids from nonviral protein cages. Proc Natl Acad Sci USA, 115(21): 5432-5437. https://doi.org/10.1073/pnas.1800527115.
Walls, A. C., B. Fiala, A. Schäfer, S. Wrenn, M. N. Pham, M. Murphy, L. V. Tse, L. Shehata, M. A. O’Connor, C. Chen, M. J. Navarro, M. C. Miranda, D. Pettie, R. Ravichandran, J. C. Kraft, C. Ogohara, A. Palser, S. Chalk, E. C. Lee, K. Guerriero, E. Kepl, C. M. Chow, C. Sydeman, E. A. Hodge, B. Brown, J. T. Fuller, K. H. Dinnon, 3rd, L. E. Gralinski, S. R. Leist, K. L. Gully, T. B. Lewis, M. Guttman, H. Y. Chu, K. K. Lee, D. H. Fuller, R. S. Baric, P. Kellam, L. Carter, M. Pepper, T. P. Sheahan, D. Veesler y N. P. King. (2020). Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell, 183(5): 1367-1382.e17. https://doi.org/10.1016/j.cell.2020.10.043.
WHO. (2024). Enfermedad de Chagas (tripanosomiasis americana). https://www.who.int/es/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis).
Yang, Y., Y. Hong, G. H. Nam, J. H. Chung, E. Koh e I. S. Kim. (2017). Virus-mimetic fusogenic exosomes for direct delivery of integral membrane proteins to target cell membranes. Adv Mater, 29(13). https://doi.org/10.1002/adma.201605604.
Zhang, P., Y. Chen, Y. Zeng, C. Shen, R. Li, Z. Guo, S. Li, Q. Zheng, C. Chu, Z. Wang, Z. Zheng, R. Tian, S. Ge, X. Zhang, N. S. Xia, G. Liu y X. Chen. (2015). Virus-mimetic nanovesicles as a versatile antigen-delivery system. Proc Natl Acad Sci USA, 112(45): E6129-38. https://doi.org/10.1073/pnas.1505799112.
Zhao, Xiu, Yiyang Wang, Wenxiao Jiang, Qiongwei Wang, Jun Li, Zhiyang Wen, Airong Li, Kaixiang Zhang, Zhenzhong Zhang, Jinjin Shi y Junjie Liu. (2022). Herpesvirus-mimicking DNAzyme-loaded nanoparticles as a mitochondrial DNA stress inducer to activate innate immunity for tumor therapy. Adv Mater, 34(37): 2204585. https://doi.org/10.1002/adma.202204585.
Zhuang, R., M. Chen, Y. Zhou, W. Cheng, T. Zhang, Y. Ni, C. Guo, J. Tu y L. Jiang. (2021). Virus-mimicking liposomal system based on dendritic lipopeptides for efficient prevention ischemia/reperfusion injury in the mouse liver. ACS Macro Lett, 10(2): 215-222. https://doi.org/10.1021/acsmacrolett.0c00743.
Zingales, B., M. A. Miles, D. A. Campbell, M. Tibayrenc, A. M. Macedo, M. M. Teixeira, A. G. Schijman, M. S. Llewellyn, E. Lages-Silva, C. R. Machado, S. G. Andrade y N. R. Sturm. (2012). The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol, 12(2): 240-53. https://doi.org/10.1016/j.meegid.2011.12.009.