Nanomateriales carbonosos y óxido de silicio para la remoción de toxinas urémicas: una revisión Carbonaceous nanomaterials and silicon oxide for the removal of uremic toxins: a review
Conteúdo do artigo principal
Resumo
La enfermedad renal crónica es un problema de salud global que afecta a millones de personas en todo el mundo. Uno de los tratamientos más comunes para esta condición es la hemodiálisis, que implica la eliminación de toxinas urémicas del torrente sanguíneo mediante un sistema extracorpóreo. Sin embargo, la eficacia de la hemodiálisis puede verse limitada por la presencia de toxinas urémicas de bajo peso molecular difíciles de eliminar mediante técnicas convencionales. En los últimos años, se ha investigado el uso de nanomateriales carbonosos y óxido de silicio como adsorbentes para la remoción de estas toxinas, debido a sus propiedades únicas de alta superficie y capacidad de adsorción. Estos materiales representan una nueva y prometedora clase de adsorbentes para la remoción de toxinas urémicas en pacientes con insuficiencia renal crónica, que mejoren el porcentaje de remoción en la sangre y aumenten la calidad de vida de los pacientes. En esta revisión, se presenta un análisis detallado de los avances más recientes en el uso de nanomateriales carbonosos y óxido de silicio para la remoción de toxinas urémicas, así como los avances más recientes en este campo, con un enfoque en los mecanismos de adsorción y la eficacia de remoción.
Detalhes do artigo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Referências
Akchurin, O. M. (2019). Chronic kidney disease and dietary measures to improve outcomes. Pediatric Clinics of North America, 66(1): 247-267. https://doi.org/10.1016/j.pcl.2018.09.007.
Alvarado, C. et al. (2019). Graphene nanoplatelets modified with amino-groups by ultrasonic radiation of variable frequency for potential adsorption of uremic toxins. Nanomaterials, 9(9): 1261. https://doi.org/10.3390/nano9091261.
Alvarado, C. et al. (2022). Non-woven fabrics based on nylon 6/carbon black-graphene nanoplatelets obtained by melt-blowing for adsorption of urea, uric acid and creatinine. Material Letters, 320: 132382. Elservier. https://doi.org/10.1016/j.matlet.2022.132382.
Andrade-Guel, M. L., Cabello-Alvarado, Ch., Cruz-Delgado, V. J., Bartolo-Pérez, P., De León-Martínez, P. A., Sáenz-Galindo, A., Cadenas-Pliego, G., Ávila-Orta, C. A. (2019). Surface modification of graphene nanoplatelets by organic acids and ultrasonic radiation for enhance uremic toxins adsorption. México. https://doi.org/10.3390/ma12050715.
Andreoli, M. C. C. y Totoli, C. (2020). Peritoneal dialysis. Revista Da Associacao Medica Brasileira (1992): 66(Suppl 1): s37-s44. https://doi.org/10.1590/1806-9282.66.S1.37.
Andrews, R., Jacques, D., Minot, M., Rantell, T., Saini, R. K. y Loadmann, M. (2002). Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromolecular Materials and Engineering, 287(6): 395-403. https://doi.org/10.1002/1439-2054(20020601)287:6%3C395::AID-MAME395%3E3.0.CO;2-S.
Argaiz, E. R., Morales-Juárez, L., Razo, C., Ong, L., Rafferty, Q., Rincón-Pedrero, R. y Gamba, G. (2023). La carga de enfermedad renal crónica en México. Análisis de datos basado en el estudio. Global burden of disease. Gaceta Médica de México, 159(6). https://doi.org/10.24875/GMM.23000393.
Ávila-Saldívar, M. N., Conchillos-Olivares, G., Rojas-Báez, I. C., Elizabeth, A. (2013) Enfermedad renal crónica: causa y prevalencia en la población del Hospital General La Perla. Med. Interna Mex. 29 (5): 473-478.
Baughman, R. H., Zakhidov, A. A. y de Heer, W. A. (2002). Carbon nanotubes — The route toward applications. Science, 297(5582): 787-792. https://doi.org/10.1126/science.1060928.
Bawendi, M. G., Steigerwald, M. L. y Brus, L. E. (1990). The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annual Review of Physical Chemistry, 41(1): 477-496. https://doi.org/10.1146/annurev.pc.41.100190.002401.
Bhattacharyya, S. y Singh, S. (2019). Nanotechnology: exploring concepts, potential applications, and their implications. Nano Today, 25: 10-24.
Bhushan, B. (2017). Introduction to nanotechnology. En Springer handbook of nanotechnology. Springer, 1-10.
Cai Q., Luo Z. S., Pang, W. Q., Fan, Y. W., Chen, X. H., Cui, F. Z. (2006). Biocompatibility of a mesoporous silica nanoparticle (MSN)-carbon nanotube (CNT) composite with endothelial cells. J Nanosci Nanotechnol, 6(3): 785-91. https://doi.org/10.1166/jnn.2006.163.
Cheah, W.-K., Sim, Y.-L. y Yeoh, F.-Y. (2016). Amine-functionalized mesoporous silica for urea adsorption. Materials Chemistry and Physics, 175: 151-157. https://doi.org/10.1016/j.matchemphys.2016.03.007.
Chen, H., Li, J., Shao, D., Ren, X. y Wang, X. (2012). Poly (acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution. Chemical Engineering Journal, 210: 475-481. https://doi.org/10.1016/j.cej.2012.08.082.
Chu, K. H., Bashiri, H., Hashim, M. A., Abd Shukor, M. Y. y Bollinger, J.-C. (2023). The Halsey isotherm for water contaminant adsorption is fake. Separation and Purification Technology, 313: 123500. https://doi.org/10.1016/j.seppur.2023.123500.
Coleman, J. N., Khan, U., Blau, W. J. y Gun’ko, Y. K. (2006). Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon, 44(9): 1624-1652. https://doi.org/10.1016/j.carbon.2006.02.038.
Ding, S., Wang, D. y Wang, X. (2022). Hierarchically structural layered double oxides with stretchable nanopores for highly effective removal of protein-bound uremic toxins. Separation and Purification Technology, 301: 122033. https://doi.org/10.1016/j.seppur.2022.122033.
DOF. (2022). Acuerdo Número ACDO.AS3.HCT.251121/301.P.DF. Aprobación de los costos unitarios por nivel de atención medica actualizada al 2022. Diario Oficial de la Federación (DOF). México. https://www.dof.gob.mx/nota_detalle.php?codigo=5672661&fecha=29/11/2022.
Donaldson, K. y Stone, V. (2003). Current hypotheses on the mechanisms of toxicity of ultrafine particles. Annali Dell’Istituto Superiore Di Sanita, 39(3): 405-410.
Dresselhaus, M. S., Dresselhaus, G. y Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: their properties and applications. Academic Press. https://doi.org/10.1021/ja965593l.
Duranton, F., Cohen, G., De Smet, R., Rodríguez, M., Jankowski, J., Vanholder, R. et al. (2012). Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol., 23(7): 1258-1270. https://doi.org/10.1681/ASN.2011121175.
Dykman, L. A. y Khlebtsov, N. G. (2012). Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews, 41(6): 2256-2282. https://doi.org/10.1039/C1CS15166E.
El-Khatib, E. M. (2012). Antimicrobial and self-cleaning textiles using nanotechnology. Research Journal of Textile and Apparel, 16(3): 156-174. https://doi.org/10.1108/RJTA-16-03-2012-B016.
Evans, M., Lewis, R. D., Morgan, A. R., Whyte, M. B., Hanif, W., Bain, S. C., Davies, S., Dashora, U., Yousef, Z., Patel, D. C. y Strain, W. D. (2022). A narrative review of chronic kidney disease in clinical practice: current challenges and future perspectives. Advances in Therapy, 39(1): 33-43. https://doi.org/10.1007/s12325-021-01927-z.
Evenepoel, P., Meijers, B. K. I., Bammens, B. R. M., Verbeke, K. (2009). Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl., 76 (Suppl 114): S12-S19. https://doi.org/10.1038/ki.2009.402.
Feng, X., Chen, A., Zhang, Y., Wang, J., Shao, L. et al. (2018). Silica nanocapsules with ultralarge pores for the removal of low–molecular weight uremic toxins. ACS Applied Materials & Interfaces, 10(6): v5465-5472. https://doi.org/10.1021/acsami.7b17197.
Ficheux, A., Kerr, P. G., Brunet, P. y Argiles, A. (2011). The ultrafiltration coefficient of a dialyser (KUF) is not a fixed value, and it follows a parabolic function: the new concept of KUF max. Nephrology Dialysis Transplantation, 26(2): 636-640. https://doi.org/10.1093/ndt/gfq510.
Gaitonde, D. Y., Cook, D. L., Rivera, I. M., (2017). Chronic kidney disease: detection and evaluation. American Family Physician, 96(12): 776-783.
Gao, C., Zhang, Q., Yang, Y., Li, Y. y Lin, W. (2022). Recent trends in therapeutic application of engineered blood purification materials for kidney disease. Biomaterials Research, 26(1). https://doi.org/10.1186/s40824-022-00250-0.
Geim, A. K. y Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3): 183-191.
Giraldo, Y. G., Fernández, E. M. B., Muñoz, R. G., López, C. M. D. y Bouarich, H. (2023). Chronic kidney disease (I). Aetiopathogenisis, clinical manifestations, diagnosis and prognosis. Medicine - Accredited Continuing Medical Training Program, 13(80): 4730-4737. https://doi.org/10.1016/j.med.2023.05.012.
Goicoechea, M. (2021). Ácido úrico y enfermedad renal crónica: afectación renal en las enfermedades sistémicas. Servicio de Nefrología. Hospital General Universitario Gregorio Marañón. Madrid. https://www.nefrologiaaldia.org/es-articulo-acido-urico-enfermedad-renal-cronica-200.
Guerreiro, J. F., Pereira da Silva, M., Bordonhos, M., Minhalma, M., Pinto, M. L. y De Pinho, M. N. (2023). Synthesis and characterization of MOF/silica cellulose acetate-based membranes: removal of uremic toxins in haemodialysis spent dialysate. Desalination, 565: 116860. https://doi.org/10.1016/j.desal.2023.116860.
Gupta, A. K. y Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18): 3995-4021. https://doi.org/10.1016/j.biomaterials.2004.10.012.
Henao, V. C. (2010). Enfermedad renal crónica. En Nefrología básica 2. Colombia, 189- 205.
Hernández, O. (2021). Alotropos. México. www.youtube.com/@prof.osvaldohernandez.
Hill, N. R., Fatoba, S. T., Oke, J. L., Hirst, J. A., O’Callaghan, C. A., Lasserson, D. S. y Hobbs, F. D. R. (2016). Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS One, 11(7): e0158765. https://doi.org/10.1371/journal.pone.0158765.
Htay, H., Johnson, D. W., Craig, J. C., Teixeira Pinto, A., Hawley, C. M. y Cho, Y. (2021). Urgent start peritoneal dialysis versus haemodialysis for people with chronic kidney disease. Cochrane Database of Systematic Review, 1(1): CD012899, enero 27. https://doi.org/10.1002/14651858.CD012899.pub2.
Hu, J., Odom, T. W. y Lieber, C. M. (1999). Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research, 32(5): 435-445. https://doi.org/10.1021/ar9700365.
Huber, D. L. (2005). Synthesis, properties, and applications of iron nanoparticles. Small, 1(5): 482-501. https://doi.org/10.1002/smll.200500006.
INEGI (Instituto Nacional de Estadística y Geografía). (2023). Estadística de defunciones registradas de enero a junio 2022. Comunicado de prensa número 29: 1-40. https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2024/EDR/EDR2023_En-Jn.pdf.
INSP (Instituto Nacional de Salud Pública). (2020). La enfermedad renal crónica en México. https://www.insp.mx/avisos/5296-enfermedad-renal-cronica-mexico.html.
Jha, V., García, G., Iseki, K., Li, Z., Naicker, S., Plattner, B. et al. (2013). Chronic kidney disease: global dimension and perspectives. The Lancet. 382(9888):260-72. https://doi.org/10.1016/S0140-6736(13)60687-X.
Jiang, Q., Song, R., Xu, L., Tang, Y., Li, H., Cheng, Z. et al. (2020). Carbon-based nanomaterials for hemoperfusion: a mini-review. Frontiers in Chemistry, 8: 405. https://doi.org/10.3389/fchem.2020.00405.
K/DOQI. (2002). Clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. National Kidney Foundation. Am J Kidney Dis, 39(suppl 1) 1: S1-266.
Kameda, T., Horikoshi, K., Kumagai, S., Saito, Y. y Yoshioka, T. (2020). Adsorption of urea, creatinine, and uric acid onto spherical activated carbon. Separation and Purification Technology, 237: 116367. https://doi.org/10.1016/j.seppur.2019.116367.
Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z. H., Bhatti, H. N. y Nouren, S. (2018). Dyes adsorption using clay and modified clay: a review. Journal of Molecular Liquids, 256: 395-407. https://doi.org/10.1016/j.molliq.2018.02.034.
Kim, T., Hyeon, T. (2014). Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology, 25(1): 012001. https://doi.org/10.1088/0957-4484/25/1/012001.
Kotanko, P., Kuhlmann, M. K. y Levin, N. W. (2010). Hemodialysis: principles and techniques. En Comprehensive clinical nephrology, 4th ed. Elsevier, 1053-1059. https://doi.org/10.1016/B978-0-323-05876-6.00089-7.
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. y Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108(6): 2064-2110. https://doi.org/10.1021/cr068445e.
Levey, A. S., Coresh, J. (2012) Chronic kidney disease. The Lancet, 379(9811): 165-180. https://doi.org/10.1016/S0140-6736(11)60178-5.
Li, J., Li, X., Wang, X., Ye, Q., Zhai, K. et al. (2017). Removal of uremic toxins by mesoporous silica nanoparticles. Scientific Reports, 7: 8809. https://doi.org/10.1038/s41598-017-09368-2.
Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J. y Meyyappan, M. (2003). Carbon nanotube sensors for gas and organic vapor detection. Nano letters, 3(7): 929-933. https://doi.org/10.1021/nl034220x.
Liabeuf, S., Barreto, D. V., Barreto, F. C., Meert, N., Glorieux, G., Schepers, E. et al. (2010). Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol Dial Transplant. 25(4): 1183-1191. https://doi.org/10.1093/ndt/gfp592.
Liabeuf, S., Glorieux, G., Lenglet, A., Diouf, M., Schepers, E., Desjardins, L. et al. (2013). Does p-cresylglucuronide have the same impact on mortality as other protein-bound uremic toxins? PLoS One. 8(6): e67168. https://doi.org/10.1371/journal.pone.0067168.
Lijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348): 56-58. https://doi.org/10.1038/354056a0.
Lin, Y. S., Hurley, K. R., Haynes, C. L. (2012). Critical considerations in the biomedical use of mesoporous silica nanoparticles. Journal of Physical Chemistry Letters, 3(3): 364-374. https://doi.org10.1021/jz2015164.
Lin, Y., Xu, Z., Wang, Z., Wang, L., Lin, J., Yao, C. et al. (2016). Efficient removal of uremic toxin by functionalized nanoporous carbon: an in vitro study. ACS Applied Materials & Interfaces, 8(7): 4703-4711. https://doi.org/10.1021/acsami.5b12122.
Liu, Y., Peng, X., Hu, Z., Yu, M., Fu, J. y Huang, Y. (2021). Fabrication of a novel nitrogen-containing porous carbon adsorbent for protein-bound uremic toxins removal. Materials Science and Engineering: C, 121: 111879. https://doi.org/10.1016/j.msec.2021.111879.
López, D. E. (2008). Enfermedad renal crónica; definición y clasificación. El Residente, 3(3): 73-78. https://www.medigraphic.com/pdfs/residente/rr-2008/rr083b.pdf.
Lu, J., Liong, M., Zink, J. I., Tamanoi, F. (2007). Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small, 3(8): 1341-1346. https://doi.org10.1002/smll.200700012.
Lythe, J. E., Xue, H., Lynch, K. E., Curhan, G. C., Brunelli, S. M. (2015). Association of mortality risk with various definitions of intradialytic hypotension. Journal of the American Society of Nephrology, 26(3): 724-34. https://doi.org10.1681/ASN.2014020187.
Malik, D. J., Warwick, G. L., Mathieson, I., Hoenich, N. A. y Streat, M. (2005). Structured carbon haemoadsorbents for the removal of middle molecular weight toxins. Carbon, 43(11): 2317-2329. https://doi.org/10.1016/j.carbon.2005.04.038A.
Malik, S., Muhammad, K. y Waheed, Y. (2023). Nanotechnology: a revolution in modern industry. Molecules, 28(2): 661. https://doi.org/10.3390/molecules28020661.
Malo, M. A. y De Francisco, A. L. M. (2010). Dializadores y membranas de diálisis. Nefrología al día. Madrid: Grupo Editorial Nefrología de la Sociedad Española de Nefrología, 425-435.
Martín Martínez, J. Miguel. (1990). Adsorción física de gases y vapores por carbones. España: Universidad de Alicante.
Martínez, G., Guerra, E. y Pérez, D. (2020). Enfermedad renal crónica, algunas consideraciones actuales. Multimed, Revista Médica. Granma, 42(2), Cuba.
Miardan, L. N., Rezaii, E., Mahkam, M. y Khosroshahi, H. T. (2023). Synthesis of mesoporous silica nanoparticles linked by molecularly imprinted polymers and examination of their ability to remove uremic toxins. Journal of Porous Materials, 30(6): 1995-2010. https://doi.org/10.1007/s10934-023-01480-w.
Mosavi, S. H. y Zare-Dorabei, R. (2023). Synthesis of an IRMOF-1@SiO 2 core–shell and amino-functionalization with APTES for the adsorption of urea and creatinine using a fixed-bed column study. Langmuir, 39(18): 6623-6636. https://doi.org/10.1021/acs.langmuir.3c00632.
Mosleh-Shirazi, S., Abbasi, M., Moaddeli, M. Reza, Vaez, A., Shafiee, M., Kasaee, S. R., Amani, A. M. y Hatam, S. (2022). Nanotechnology advances in the detection and treatment of cancer: an overview. Nanotheranostics, 6(4): 400-423. https://doi.org/10.7150/ntn.74613.
Nguyen, C. H., Fu, C.-C., Chen, Z.-H., Tran, T. T. Van, Liu, S.-H. y Juang, R.-S. (2021). Enhanced and selective adsorption of urea and creatinine on amine-functionalized mesoporous silica SBA-15 via hydrogen bonding. Microporous and Mesoporous Materials, 311: 110733. https://doi.org/10.1016/j.micromeso.2020.110733.
Niang, A., Iyengar, A. y Luyckx, V. A. (2018). Hemodialysis versus peritoneal dialysis in resource limited settings. Current Opinion in Nephrology and Hypertension, 27(6): 463-471. https://doi.org/10.1097/MNH.0000000000000455.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V. y Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696): 666-669. https://doi.org/10.1126/science.1102896.
OMS (Organización Mundial de la Salud). (2020). Las 10 principales causas de muerte. https://www.who.int/news-room/fact-sheets/detail/thetop-10-causes-of-death.
Ooi, C. H., Cheah, W. K. y Yeoh, F. Y. (2019). Comparative study on the urea removal by different nanoporous materials. Adsorption, 25(6): 1169-1175. https://doi.org/10.1007/s10450-019-00130-5.
Padilla-Osuna, I. y Escobar-Leal, G. (2017). Alteraciones en el eje intestino-riñón durante la enfermedad renal crónica: causas, consecuencias y propuestas de tratamiento. https://dx.doi.org/10.14306/renhyd.21.2.244.
Pavlenko, D., Giasafaki, D., Charalambopoulou, G., Van Geffen, E., Gerritsen, K. G. F., Steriotis, T. y Stamatialis, D. (2017). Carbon adsorbents with dual porosity for efficient removal of uremic toxins and cytokines from human plasma. Scientific Reports, 7(1): 14914. https://doi.org/10.1038/s41598-017-15116-y.
Raccichini, R., Varzi, A., Passerini, S. y Scrosati, B. (2015). The role of graphene for electrochemical energy storage. Nature materials, 14(3): 271-279.
Rai, M., Yadav, A. y Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1): 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002.
Roco, M. C. (2003). Broader societal issues of nanotechnology. Journal of Nanoparticle Research, 5(3-4): 181-189. https://doi.org/10.1023/A:1025548512438.
Rodríguez, J., Morales, B., Flores, D., Torrado, N. (2021). Diálisis y hemodiálisis. Rehabilitar Cúcuta IPS, Grupo de Investigación. Colombia.
Ronco, C., Breuer, B., Bowry, S. K. (2006) Hemodialysis membranes for high-volume hemodialytic therapies: the application of nanotechnology. Hemodial Int., 10: 48-50. https://doi.org/10.1111/j.1542-4758.2006.01191.x.
Sanders, I. J., Peeten, T. L. (2011). Carbon black: production, properties, and uses. Chemical Engineering Methods and Technology, 250-255. Nova Science Publishers. https://books.google.com.mx/books?id=we03YgEACAAJ.
Saran, R., Bragg, J. L., Levin, N. W. et al. (2006). Longer treatment time and slower ultrafiltration in hemodialysis: associations with reduced mortality in the DOPPS. Kidney International. 69(7): 1222-8. https://doi.org/10.1038/sj.ki.5000164.
Schwierz, F. (2010). Graphene transistors. Nature Nanotechnology, 5(7): 487-496. https://doi.org/10.1038/nnano.2010.89.
Sharif Sh., M., Golestani Fard, F., Khatibi, E. y Sarpoolaky, H. (2009). Dispersion and stability of carbon black nanoparticles, studied by ultraviolet–visible spectroscopy. Journal of the Taiwan Institute of Chemical Engineers, 40(5): 524-527. https://doi.org/10.1016/j.jtice.2009.03.006.
Shoueir, K., Wahba, A. M., El Marouazi, H. y Janowska, I. (2023). Performant removal of creatinine using few-layer-graphene/alginate beads as a kidney filter. International Journal of Biological Macromolecules, 242: 124936. https://doi.org/10.1016/j.ijbiomac.2023.124936.
Shrestha, B. M. (2018). Peritoneal dialysis or haemodialysis for kidney failure? JNMA. Journal of the Nepal Medical Association, 56(210): 556-557.
Sperling, R. A., Rivera Gil, P., Zhang, F., Zanella, M. y Parak, W. J. (2008). Biological applications of gold nanoparticles. Chemical Society Reviews, 37(9): 1896-1908. https://doi.org/10.1039/B712170A.
Tagle, R. (2016). Enfermedad renal crónica. Chile: Departamento de Nefrología, Pontificia Universidad Católica de Chile.
Vanholder, R., De Smet, R., Glorieux, G., Argilés, A., Baurmeister, U., Brunet, P. et al. (2003). Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 63(5): 1934-1943. https://doi.org/10.1046/j.1523-1755.2003.00924.x.
Wang, Y., Wang, L., Chen, H., Liang, J., He, F., Zhang, L. et al. (2021). Three-dimensional nanoporous graphene-based material for the removal of uremic toxins: a biocompatible and efficient adsorbent. Chemical Engineering Journal, 404: 127090. https://doi.org/10.1016/j.cej.2020.127090.
Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J. et al. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine. 11(2): 313-327. https://doi.org/10.1016/j.nano.2014.09.014.
Waring, M. S. y Wells, J. R. (2015). Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: magnitudes and impacts of oxidant sources. Atmospheric Environment, 106: 382-391. https://doi.org/10.1016/j.atmosenv.2014.06.062.
Webster, A. C., Nagler, E. V., Morton, R. L., Masson, P. (2017). Chronic kidney disease. The Lancet, 389(10075): 1238-52. https://doi.org/10.1016/S0140-6736(16)32064-5.
Whitesides, G. M. (2003). The ‘right’ size in nanobiotechnology. Nature Biotechnology, 21(10): 1161-1165.
World Kidney Day. (2023). Spanish translation. http://www.worldkidneyday.org.
Yang, I.-H., Szabó, L., Sasaki, M., Uto, K., Henzie, J., Lin, F.-H., Samitsu, S. y Ebara, M. (2023). Biobased chitosan-derived self-nitrogen-doped porous carbon nanofibers containing nitrogen-doped zeolites for efficient removal of uremic toxins during hemodialysis. International Journal of Biological Macromolecules, 253: 126880. https://doi.org/10.1016/j.ijbiomac.2023.126880.
Yantasee, W., Rutledge, R. D., Chouyyok, W., Sukwarotwat, V., Orr, G., Warner, C. L., Warner, M. G., Fryxell, G. E., Wiacek, R. J., Timchalk, C. y Addleman, R. S. (2010). Functionalized nanoporous silica for the removal of heavy metals from biological systems: adsorption and application. ACS Applied Materials & Interfaces, 2(10): 2749-2758. https://doi.org/10.1021/am100616b.
Ye, C., Gong, Q., Lu, F. y Liang, J. (2007). Adsorption of uraemic toxins on carbon nanotubes. Separation and Purification Technology, 58(1): 2-6. https://doi.org/10.1016/j.seppur.2007.07.003.
Yu, X., Shen, L., Li, X., Wang, X., Zhu, M., Hsiao S. (2017). High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule uremic toxic removal. Journal of Membranes Science, 523: 173-184. https://doi.org/10.1016/j.memsci.2016.09.057.
Zhang, Y., Zhang, S., Liu, J., Huang, J., Fan, Q. et al. (2016). Silica nanoparticles as efficient removal agents for uremic toxins: towards a sorbent-based dialysis treatment. Small, 12(40): 5555-5562. https://doi.org/10.1002/smll.201601846.
Zhang, M., Atkinson, K. R. y Baughman, R. H. (2004). Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 306(5700): 1358-1361. https://doi.org/10.1126/science.1104276.
Zhang, Y., Sun, H., Yu, H., Liang, J., Zhang, F. et al. (2021). Nanomaterials for the removal of uremic toxins from dialysate: a comprehensive review. Materials Science and Engineering: C., 128: 112336. https://doi.org/10.1016/j.msec.2021.112336.
Zheng, K., Setyawati, M. I., Lim, T. P., Leong, D. T., Xie, J. (2016). Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano, 10(8): 7934-7942. https://doi.org/10.1021/acsnano.6b03602.