Introducción a la microscopía y nanoscopía a frecuencias GHz y THz

Conteúdo do artigo principal

Naser Qureshi
Cesar Leonardo Ordóñez Romero
Amado Velázquez Benítez
Oleg Kolokoltsev

Resumo

Se da cuenta del estado actual de la microscopía con microondas y ondas milimétricas, sus ventajas y sus retos. Aunque la microscopía óptica tradicional y sus variantes recientes, que incluyen métodos de super-resolución, es por mucho la microscopía más versátil y usado en las ciencias, existen aplicaciones puntuales en las que la microscopía en rangos del espectro electromagnético con mayor longitud de onda puede proporcionar información física no accesible con la óptica.  En este artículo damos a conocer algunos ejemplos recientes, en particular aquellos desarrollados en México.

Detalhes do artigo

Como Citar
Qureshi, N., Ordóñez Romero, C. L., Velázquez Benítez, A., & Kolokoltsev, O. (2019). Introducción a la microscopía y nanoscopía a frecuencias GHz y THz. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 13(24), 1e-13e. https://doi.org/10.22201/ceiich.24485691e.2020.24.69620
Seção
Artigos de revisão

Referências

Adam, A. J. L. (2011). Review of near-field terahertz measurement methods and their applications. J Infrared Milli Terahz Waves, 32: 976-1019. http://dx.doi.org/10.1007/s10762-011-9809-2

Beard,M. C., G. M. Turner, C. A. Schmuttenmaer. (2002). Terahertz Spectroscopy. J. Phys. Chem. B, 106, 7146-7159. http://dx.doi.org/10.1021/jp020579i

Cocker, T. L. et al. (2013). An ultrafast terahertz scanning tunnelling microscope. Nature Photonics, 7: 620. http://dx.doi.org/10.1038/nphoton.2013.151

Cocker, T. L., D. Peller, P. Yu, J. Repp y R. Huber. (2016). Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature, 539: 263-267. http://dx.doi.org/10.1038/nature19816

Chen, H. T., R. Kersting. (2003). Terahertz imaging with nanometer resolution. Appl. Phys. Lett., 83: 3009. http://dx.doi.org/10.1063/1.1616668

Chernomyrdin, N. V. et al., (2018). Reflection-mode continuous-wave 0.15λ-resolution terahertz solid immersion microscopy of soft biological tissues. Appl. Phys. Lett., 113(11): 111102. http://dx.doi.org/10.1063/1.5045480

Dhillon, S. S. et al. (2017). The 2017 terahertz science and technology roadmap. J. Phys. D: Appl. Phys., 50(4). http://dx.doi.org/10.1088/1361-6463/50/4/043001

García-Jomaso, Angelica Y. et al. (2019). Interferometric detection for terahertz microscopy. Proc. of SPIE, 10917 1091715-1. http://dx.doi.org/10.1117/12.2510560

Hecht, E. (2017). Optics, 5th ed., chap. 5. Pearson Education Limited.

Hell, Stefan W. et al. (2007). Far filed nanoscopy. Science, 316: 1153. http://dx.doi.org/10.1126/science.1137395

Hu, B. B., M. C. Nuss. (1995). Imaging with terahertz waves. Opt. Lett., 20(16): 1716. http://dx.doi.org/10.1364/OL.20.001716

Imtiaz, A. et al. (2007). Nanometer-scale material contrast imaging with a near-field microwave microscope. Appl. Phys. Lett, 90, 143106. http://dx.doi.org/10.1063/1.2719164

Koch Dandolo, C. L. (2018). Terahertz time-domain imaging to guide a conservation intervention on a stratified easel painting. J Infrared Milli Terahz Waves, 39: 773-784. http://dx.doi.org/10.1007/s10762-018-0505-3

Lee, K. et al. (2009). Visualization of magnetic domains by near-field scanning microwave microscope. Ultramicroscopy, 109: 889-893. http://dx.doi.org/10.1016/j.ultramic. 2009.03.013

López-Maldonado, Guillermo et al. (2014). Graphite thin film characterization using a simplified resonant near field scanning microwave microscope. Revista Mexicana de Física, 60(88).

Mitrofanov, O. et al., (2000). Terahertz near-field microscopy based on a collection mode detector. Appl. Phys. Lett., 77(22): 3496-3498. http://dx.doi.org/10.1063/1.1328772

Ordoñez-Romero, César L. et al. (2019). Pulsed spin wave propagation in a magnonic crystal. J. Appl. Phys. 126, 083902. http://dx.doi.org/10.1063/1.5111765

Park, J. Hyun S, Kim A, Kim T, Char K. (2005). Observation of biological samples using a scanning microwave microscope. Ultramicroscopy, 102 (2005): 101-106. http://dx.doi.org/10.1016/j.ultramic.2004.09.007

Qureshi, Naser et al. (1998). Terahertz excitation of AFM-defined room temperature quantum dots. Physica E, 2: 701-703

Qureshi, Naser et al. (2012). An active resonator based on magnetic films for near field microwave microscopy. Journal of Applied, Physics, 111, 07A504. http://dx.doi.org/10.1063/1.3672081

Qureshi, Naser et al. (2018). Terahertz and millimeter wave imaging: a portable tool for characterization. IEEE Photoncis Society Newsletter, 32(6): 4-9.

Rosner, Bjorn T. y Daniel W. van der Weide. (2002). High-frequency near-field microscopy. Rev. Sci. Instrm., 73: 2505. http://dx.doi.org/10.1063/1.1482150

Synge, E. H.(1928). XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6(35): 356-362. http://dx.doi.org/10.1080/14786440808564615

Yuan, T., J. Z. Xu, X. C. Zhang. (2004). Development of terahertz wave microscopes. Infrared Physics & Technology 45: 417-425. https://doi.org/10.1016/j.infrared.2004.01.016