Introduction to microscopy and nanoscopy at GHz and THz frequencies

Main Article Content

Naser Qureshi
Cesar Leonardo Ordóñez Romero
Amado Velázquez Benítez
Oleg Kolokoltsev

Abstract

The current state of microwave microscopy and millimeter waves, its advantages and challenges are summarized. Although traditional optical microscopy and its recent variants, which include super-resolution methods, is by far the most versatile and used microscopy in science, there are specific applications in which microscopy in ranges of the electromagnetic spectrum with greater wavelength can provide physical information not accessible with optics. This article summarizes some recent examples, particularly those developed in Mexico.

Downloads

Download data is not yet available.

Article Details

How to Cite
Qureshi, N., Ordóñez Romero, C. L., Velázquez Benítez, A., & Kolokoltsev, O. (2019). Introduction to microscopy and nanoscopy at GHz and THz frequencies. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 13(24), 1e-13e. https://doi.org/10.22201/ceiich.24485691e.2020.24.69620
Section
Review articles

References

Adam, A. J. L. (2011). Review of near-field terahertz measurement methods and their applications. J Infrared Milli Terahz Waves, 32: 976-1019. http://dx.doi.org/10.1007/s10762-011-9809-2

Beard,M. C., G. M. Turner, C. A. Schmuttenmaer. (2002). Terahertz Spectroscopy. J. Phys. Chem. B, 106, 7146-7159. http://dx.doi.org/10.1021/jp020579i

Cocker, T. L. et al. (2013). An ultrafast terahertz scanning tunnelling microscope. Nature Photonics, 7: 620. http://dx.doi.org/10.1038/nphoton.2013.151

Cocker, T. L., D. Peller, P. Yu, J. Repp y R. Huber. (2016). Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature, 539: 263-267. http://dx.doi.org/10.1038/nature19816

Chen, H. T., R. Kersting. (2003). Terahertz imaging with nanometer resolution. Appl. Phys. Lett., 83: 3009. http://dx.doi.org/10.1063/1.1616668

Chernomyrdin, N. V. et al., (2018). Reflection-mode continuous-wave 0.15λ-resolution terahertz solid immersion microscopy of soft biological tissues. Appl. Phys. Lett., 113(11): 111102. http://dx.doi.org/10.1063/1.5045480

Dhillon, S. S. et al. (2017). The 2017 terahertz science and technology roadmap. J. Phys. D: Appl. Phys., 50(4). http://dx.doi.org/10.1088/1361-6463/50/4/043001

García-Jomaso, Angelica Y. et al. (2019). Interferometric detection for terahertz microscopy. Proc. of SPIE, 10917 1091715-1. http://dx.doi.org/10.1117/12.2510560

Hecht, E. (2017). Optics, 5th ed., chap. 5. Pearson Education Limited.

Hell, Stefan W. et al. (2007). Far filed nanoscopy. Science, 316: 1153. http://dx.doi.org/10.1126/science.1137395

Hu, B. B., M. C. Nuss. (1995). Imaging with terahertz waves. Opt. Lett., 20(16): 1716. http://dx.doi.org/10.1364/OL.20.001716

Imtiaz, A. et al. (2007). Nanometer-scale material contrast imaging with a near-field microwave microscope. Appl. Phys. Lett, 90, 143106. http://dx.doi.org/10.1063/1.2719164

Koch Dandolo, C. L. (2018). Terahertz time-domain imaging to guide a conservation intervention on a stratified easel painting. J Infrared Milli Terahz Waves, 39: 773-784. http://dx.doi.org/10.1007/s10762-018-0505-3

Lee, K. et al. (2009). Visualization of magnetic domains by near-field scanning microwave microscope. Ultramicroscopy, 109: 889-893. http://dx.doi.org/10.1016/j.ultramic. 2009.03.013

López-Maldonado, Guillermo et al. (2014). Graphite thin film characterization using a simplified resonant near field scanning microwave microscope. Revista Mexicana de Física, 60(88).

Mitrofanov, O. et al., (2000). Terahertz near-field microscopy based on a collection mode detector. Appl. Phys. Lett., 77(22): 3496-3498. http://dx.doi.org/10.1063/1.1328772

Ordoñez-Romero, César L. et al. (2019). Pulsed spin wave propagation in a magnonic crystal. J. Appl. Phys. 126, 083902. http://dx.doi.org/10.1063/1.5111765

Park, J. Hyun S, Kim A, Kim T, Char K. (2005). Observation of biological samples using a scanning microwave microscope. Ultramicroscopy, 102 (2005): 101-106. http://dx.doi.org/10.1016/j.ultramic.2004.09.007

Qureshi, Naser et al. (1998). Terahertz excitation of AFM-defined room temperature quantum dots. Physica E, 2: 701-703

Qureshi, Naser et al. (2012). An active resonator based on magnetic films for near field microwave microscopy. Journal of Applied, Physics, 111, 07A504. http://dx.doi.org/10.1063/1.3672081

Qureshi, Naser et al. (2018). Terahertz and millimeter wave imaging: a portable tool for characterization. IEEE Photoncis Society Newsletter, 32(6): 4-9.

Rosner, Bjorn T. y Daniel W. van der Weide. (2002). High-frequency near-field microscopy. Rev. Sci. Instrm., 73: 2505. http://dx.doi.org/10.1063/1.1482150

Synge, E. H.(1928). XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6(35): 356-362. http://dx.doi.org/10.1080/14786440808564615

Yuan, T., J. Z. Xu, X. C. Zhang. (2004). Development of terahertz wave microscopes. Infrared Physics & Technology 45: 417-425. https://doi.org/10.1016/j.infrared.2004.01.016