Formation of hexamethylbenzene: chloranil charge transfer nanocrystals
Conteúdo do artigo principal
Resumo
The nucleation and growth of nanoparticles can be induced using the reprecipitation method, in which a solution is rapidly mixed with a miscible non-solvent. This method has been used to create a wide variety of organic nanoparticles, including those comprised of polymers or of small molecules. Here we demonstrate the formation of charge transfer nanocrystals of the electron donor hexamethylbenzene and electron acceptor chloranil using the reprecipitation method. We achieve the rapid mixing needed for nanoparticle formation in a number of ways: using a 3D printed vortex micro-mixer, a double impinging jet mixer or direct jet injection of the solution into the non-solvent. The crystal formation kinetics are characterized over times scales from 10 ms to tens of minutes using UV-Vis absorption spectroscopy and dynamic light scattering.
Detalhes do artigo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Referências
Baldyga and Pohorecki. (1995). Turbulent micromixing in chemical reactors – a review. The Chemical Engineering Journal and the Biochemical Engineering Journal, 58(2): 183-195. http://dx.doi.org/10.1016/0923-0467(95)02982-6
Erdemir, D., Lee, A.Y. and Myerson, A. S. (2009). Nucleation of crystals from solution: classical and two-step models. Acc. Chem. Res. 42: 621-9. http://dx.doi.org/10.1021/ar800217x
Foster, R., Hammick, D. L. and Parsons, B. N. (1956). Interaction of Lewis acids with aromatic hydrocarbons and bases. Part X VI.* The association of chloranil with methylbenzenes in cyclohexane. J. Chem. Soc., 555-558.
Frisken, B. J. (2001). Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl. Opt., 40: 4087-4091. http://dx.doi.org/10.1364/AO.40.004087
Goetz, K. P., Vermeulen, D., Payne, M. E., Kloc, C., McNeil, L. E. and Jurchescu, O. D. (2014). Charge-transfer complexes: new perspectives on an old class of compounds. J. Mater. Chem. C. 2: 3065-3076. http://dx.doi.org/10.1039/C3TC32062F
Harding, T. T. and Wallwork, S. C. (1955). The structures of molecular compounds exhibiting polarization bonding. II. The crystal structure of the chloranil-hexamethylbenzene Complex. Acta Cryst., 8: 787-794. http://dx.doi.org/10.1107/S0365110X55002417
Horn, D. (1989). Preparation and characterization of microdisperse bioavailable carotenoid hydrosols. Angew. Makromol. Chem., 166: 139-153. http://dx.doi.org/10.1002/apmc.1989.051660110
Horn, D., and Rieger, J. (2001). Organic nanoparticles in the aqueous phase-theory, experiment, and use. Angew. Chem. Int. Ed., 40: 4330-4361. http://dx.doi.org/10.1002/1521-3773(20011203)40:23<4330::aid-anie4330>3.0.co;2-w
Hunter, T. F. and Norfolk, T. F. (1969). Hexamethylbenzene–, durene– and mesitylene-chloranil charge transfer complexes in carbon tetrachloride. Spectrochimica Acta Part A, 25: 193-197. http://dx.doi.org/10.1016/0584-8539(69)80185-6
Johnson, B. K. and Prud’homme, R. K. (2003). Chemical processing and micromixing in confined impinging jets. AIChE J., 49: 2264-2282. http://dx.doi.org/10.1002/aic.690490905
Jones, N. D. and Marsh, R. E. (1962). On the crystal structure of the chloranil–hexamethylbenzene complex. Acta Cryst., 15: 809-810. http://dx.doi.org/10.1107/S0365110X62002121
Kasai, H., Nalwa, H. S., Oikawa, H., Okada, S., Matsuda, H., Minami, N., Kakuta, A., Ono, K., Mukoh, A. and Nakanishi, H. (1992). Novel preparation method of organic microcrystals. Jpn. J. Appl. Phys., Part 2: 31, L1132-L1134. http://dx.doi.org/10.1143/JJAP.31.L1132
Le Magueres, P., Lindeman, S. V. and Kochi, J. K. (2001). Direct relationship between intermolecular charge–transfer and charge-resonance complexes via structural changes in the arene donor with various pi–acceptors. J. Chem. Soc., Perkin Trans., 2: 1180-1185. http://dx.doi.org/10.1039/B009543P
Li, T., Melis, S., Bagade, C., Khatib, A., Hosarzycki, R., Maglieri, G., Zhang, X. and Van Keuren, E. (2019). Mechanisms of nucleation and growth in the formation of charge transfer nanocrystals. J. Nanopart. Res. 21: 147. http://dx.doi.org/10.1007/s11051-019-4593-3
Liu, Y., Cheng, C., Liu, Y., Prud’homme, R. K. and Fox, R. O. (2008). Mixing in a multi–inlet vortex mixer (MIVM) for flash nano–precipitation. Chem. Eng. Sci., 63: 2829-2842. http://dx.doi.org/10.1016/j.ces.2007.10.020
Mori, J., Miyashita, Y., Oliveira, D., Kasai, H., Oikawa, H. and Nakanishi, H. (2009). Stopped-flow analysis on the mechanism of perylene nanoparticle formation by the reprecipitation method. J. Cryst. Growth, 311: 553-555. http://dx.doi.org/10.1016/j.jcrysgro.2008.09.038
Mulliken, R. S. (1939). Intensities of electronic transitions in molecular spectra II. Charge–transfer spectra. J. Chem. Phys., 7: 20-34. http://dx.doi.org/10.1063/1.1750319
Nishida, M. and Van Keuren, E. R. (2011). Crystal formation in tetracyanoquinodimethane on the nanoscale: polymorphism and progression of self-assembly. MRS Commun., 1: 7-11.
Torrance, J. B., A. Girlando, J. J. Mayerle, J. I. Crowley, V. Y. Lee, P. Batail and S. J. LaPlaca, (1981). Anomalous nature of neutral-to-ionic phase transition in tetrathiafulvalene-chloranil. Phys. Rev. Lett. 47, 1747. http://dx.doi.org/10.1103/PhysRevLett.47.1747
Van Keuren, E. (2005). Polymer nanoparticles synthesized with solvent shifting. J. Dispersion Sci. Technol., 25: 547-553. http://dx.doi.org/10.1081/DIS-200025730
Van Keuren, E., Georgieva, E. and Durst, M. (2003). Kinetics of the growth of anthracene nanoparticles. J. Dispersion Sci. Technol., 24: 721-729. http://dx.doi.org/10.1081/DIS-120023819
Van Keuren, E., Bone, A. and Ma, C. (2008). Phthalocyanine nanoparticle formation in supersaturated solutions. Langmuir, 24: 6079-6084. http://dx.doi.org/10.1021/la800290s
Van Keuren, E. and Nishida, M. (2010). Synthesis of nanocomposite materials using the reprecipitation method. CMC-Comput. Mater. Con., 409: 61-77.