Sistemas auto-nanoemulsionables de liberación de fármacos en el desarrollo de medicamentos Self-nanoemulsifying drug delivery systems in pharmaceutical development

Contenido principal del artículo

Adriana Estela Hernández Tenorio
https://orcid.org/0009-0009-9915-2840
Diana Vanessa Mendoza Varela
José Juan Escobar Chávez
https://orcid.org/0000-0001-9229-2941
Luis Alfonso Moreno Rocha
https://orcid.org/0000-0002-1021-4884
Luis Camilo Ríos Castañeda
Jorge Esteban Miranda Calderón
https://orcid.org/0000-0002-3628-6691

Resumen

Los Sistemas Auto-Nanoemulsionables (SNEDDS) son formulaciones farmacéuticas basadas en nanotecnología que son de gran interés para fármacos poco solubles en agua (FPSA). Los SNEDDS están constituidos por una fase oleosa, un tensoactivo y un cotensoactivo que da lugar a una mezcla isotrópica, la cual forma nanoemulsiones al entrar en contacto con los fluidos intestinales. En la literatura se resalta la importancia de los SNEDDS para el desarrollo de nuevas formulaciones con FPSA. Los SNEDDS han demostrado ser formulaciones nanotecnológicas capaces de superar los desafíos asociados con la escasa solubilidad acuosa, la baja absorción y la limitada biodisponibilidad de FPSA, mejorando así las aplicaciones terapéuticas. Adicionalmente el proceso de manufactura es escalable y no involucra la inversión en equipo sofisticado a diferencia de otros sistemas nanoestructurados. Las tendencias en la modificación de SNEDDS incluyen su aplicación en nuevos tratamientos especializados, como la terapia génica, y la combinación con otros nanoacarreadores para superar limitaciones en estabilidad y eficacia. Los SNEDDS, impulsados por los avances en nanotecnología, no solo representan un avance en la formulación farmacéutica, sino que también marcan un camino hacia la mejora de la salud del paciente, destacándose como una clave para el futuro de la nanomedicina.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Hernández Tenorio, A. E., Mendoza Varela, D. V., Escobar Chávez, J. J., Moreno Rocha, L. A., Ríos Castañeda, L. C., & Miranda Calderón, J. E. (2025). Sistemas auto-nanoemulsionables de liberación de fármacos en el desarrollo de medicamentos: Self-nanoemulsifying drug delivery systems in pharmaceutical development. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 18(35), e69850. https://doi.org/10.22201/ceiich.24485691e.2025.35.69850
Sección
Artículos de revisión

Citas

Abou Assi, Reem, Ibrahim M. Abdulbaqi, Toh Seok Ming, Chan Siok Yee, Habibah A. Wahab, Shaik Mohammed Asif y Yusrida Darwis. (2020). Liquid and solid self-emulsifying drug delivery systems (SEDDs) as carriers for the oral delivery of azithromycin: optimization, in vitro characterization and stability assessment. Pharmaceutics, 12(11): 1052. https://doi.org/10.3390/pharmaceutics12111052.

Acharya, B., A. Behera, S. Behera y S. Moharana. (2024). Recent advances in nanotechnology-based drug delivery systems for the diagnosis and treatment of reproductive disorders. ACS Applied Bio Materials, 7(3): 1336-61. https://doi.org/10.1021/acsabm.3c01064.

Agubata, Chukwuma. (2020). Self-emulsifying formulations: a pharmaceutical review. Journal of Drug Delivery and Therapeutics, 10(3): 231-40. https://doi.org/10.22270/JDDT.V10I3.3981.

Ahmad, J., K. Kohli, S. R. Mir y S. Amin. (2011). Formulation of self-nanoemulsifying drug delivery system for telmisartan with improved dissolution and oral bioavailability. Journal of Dispersion Science and Technology, 32(7): 958-68. https://doi.org/10.1080/01932691.2010.488511.

Alayoubi, Alaadin, Mohammad Sabir Aqueel, Celia N. Cruz, Muhammad Ashraf y Ahmed S. Zidan. (2018). Application of in vitro lipolysis for the development of oral self-emulsified delivery system of nimodipine. International Journal of Pharmaceutics, 553(1-2): 441-53. https://doi.org/10.1016/J.IJPHARM.2018.10.066.

Alshawwa, S. Z., A. A. Kassem, R. M. Farid, S. K. Mostafa y G. S. Labib. (2022). Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics, 14(4). https://doi.org/10.3390/pharmaceutics14040883.

Arshad, Rabia, Tanveer A. Tabish, Maria Hassan Kiani, Ibrahim M. Ibrahim, Gul Shahnaz, Abbas Rahdar, Misook Kang y Sadanand Pandey. (2021). A hyalur- onic acid functionalized self-nano-emulsifying drug delivery system (SNEDDS) for enhancement in ciprofloxacin targeted delivery against intracellular infection. Nanomaterials, 11(5). https://doi.org/10.3390/nano11051086.

Aschmann, Dennis, Renzo A. Knol y Alexander Kros. (2024). Lipid-based nanoparticle functionalization with coiled-coil peptides for in vitro and in vivo drug delivery. Accounts of Chemical Research, 57(8): 1098-1110. https://doi.org/10.1021/acs.accounts.3c00769.

Bernkop-Schnürch, Andreas y Aamir Jalil. (2018). Do drug release studies from SEDDS make any sense? Journal of Controlled Release, 271: 55-59. https://doi.org/https://doi.org/10.1016/j.jconrel.2017.12.027.

Boulaiz, Houria, Pablo J. Alvarez, Alberto Ramírez, Juan A. Marchal, José Prados, Fernando Rodríguez-Serrano, Macarena Perán, Consolación Melguizo y Antonia Ara- nega. (2011). Nanomedicine: application areas and development prospects. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms12053303.

Buya, Aristote B., Ana Beloqui, Patrick B. Memvanga y Véronique Préat. (2020). Self-nano-emulsifying drug-delivery systems: from the development to the current applications and challenges in oral drug delivery. Pharmaceutics. MDPI AG. https://doi.org/10.3390/pharmaceutics12121194.

Čerpnjak, K., A. Zvonar, F. Vrečer y M. Gašperlin. (2015). Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: the effect of the polysaccharide carrier and naproxen concentration. International Journal of Pharmaceutics, 485(1-2): 215-28. https://doi.org/10.1016/j.ijpharm.2015.03.015.

Chatterjee, B., S. Hamed Almurisi, A. Ahmed Mahdi Dukhan, U. K. Mandal y P. Sengupta. (2016). Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Delivery, 23(9): 3639-52. https://doi.org/10.1080/10717544.2016.1214990.

Chavan, R. B., S. R. Modi y A. K. Bansal. (2015). Role of solid carriers in pharmaceutical performance of solid supersaturable SEDDS of celecoxib. International Journal of Pharmaceutics, 495(1): 374-84. https://doi.org/10.1016/j.ijpharm.2015.09.011.

Chen, Dexiang, and Lichun Dong. 2019. Self-emulsifying pharmaceutical emulsion for injection as well as preparation method and application thereof. CN109528652A, issued 2019.

Cirri, M., A. Roghi, M. Valleri y P. Mura. (2016). Development and characterization of fast-dissolving tablet formulations of glyburide based on solid self-microemulsifying systems. European Journal of Pharmaceutics and Biopharmaceutics, 104: 19-29. https://doi.org/10.1016/j.ejpb.2016.04.008.

Clinical Trials. (2024). Study details | Single dose ADME study of [14C]-Rencofilstat in healthy male subjects | ClinicalTrials.Gov. October 3, 2024. https://clinicaltrials.gov/study/NCT05737433?term=rencofilstat&rank=3#contacts-and-locations.

Cueto, Y. L., W. L. Ortega y R. G. Sotomayor. (2019). Self-emulsifying drug delivery systems (SEDDS): an alternative development platform for the Colombian pharmaceutical industry | Sistemas de entrega de fármacos autoemulsificables: una plataforma de desarrollo alternativa para la industria farmacéutica colombiana. Revista Colombiana de Ciencias Quimico-Farmaceuticas (Colombia), 48(2): 260-313. https://doi.org/10.15446/rcciquifa.v48n2.82696.

Dahan, A. y J. M. Miller. (2012). The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS Journal, 14(2): 244-51. https://doi.org/10.1208/s12248-012-9337-6.

Dangre, P. V., N. J. Gurram, S. J. Surana y S. S. Chalikwar. (2022). Development and optimization of vitamin D3 solid self-microemulsifying drug delivery system: investigation of flowability and shelf life. AAPS PharmSciTech, 23(4). https://doi.org/10.1208/s12249-022-02267-z.

Deshmukh, A. y S. Kulkarni. (2014). Solid self-microemulsifying drug delivery system of ritonavir. Drug Development and Industrial Pharmacy, 40(4): 477-87. https://doi.org/10.3109/03639045.2013.768632.

Devraj, R., H. D. Williams, D. B. Warren, C. J. H. Porter y C. W. Pouton. (2014). Choice of nonionic surfactant used to formulate type IIIA self-emulsifying drug delivery systems and the physicochemical properties of the drug have a pronounced influence on the degree of drug supersaturation that develops during in vitro digestion. Journal of Pharmaceutical Sciences, 103(4): 1050-63. https://doi.org/10.1002/jps.23856.

Dhaval, Mori, Poonam Vaghela, Kajal Patel, Keshvi Sojitra, Mohini Patel, Sushma Patel, Kiran Dudhat, Sunny Shah, Ravi Manek y Ramesh Parmar. (2022). Lipid-based emulsion drug delivery systems – A comprehensive review. Drug Delivery and Translational Research, 12(7): 1616-39. https://doi.org/10.1007/s13346-021-01071-9.

Dokania, Shambhu y Amita K. Joshi. (2015). Self-microemulsifying drug delivery system (SMEDDS) – Challenges and road ahead. Drug delivery, 22(6): 675-90. https://doi.org/10.3109/10717544.2014.896058.

FDA. (2019). Determining whether to submit an ANDA or a 505(b)(2) application | FDA. https://www.fda.gov. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/determining-whether-submit-anda-or-505b2-application.

Goel, Honey, Lubna Siddiqui, Asiya Mahtab y Sushama Talegaonkar. (2022). Fabrication design, process technologies, and convolutions in the scale-up of nanotherapeutic delivery systems. Nanoparticle therapeutics: production technologies, types of nanoparticles, and regulatory aspects, 47-131. Elsevier. https://doi.org/10.1016/B978-0-12-820757-4.00017-X.

Griesser, Janine, Gergely Hetényi, Christoph Federer, Christian Steinbring, Helmut Ellemunter, Katharina Niedermayr y Andreas Bernkop-Schnürch. (2019). Highly mucus permeating and zeta potential changing self-emulsifying drug delivery systems: a potent gene delivery model for causal treatment of cystic fibrosis. International Journal of Pharmaceutics, 557(febrero): 124-34. https://doi.org/10.1016/j.ijpharm.2018.12.048.

Gunjal, Pradnya, Sukriti Vishwas, Rajan Kumar, Bushra Bashir, Bimlesh Kumar, Navneet Khurana, Monica Gulati et al. (2024). Enhancing the oral bioavailability of fisetin: polysaccharide-based self nano-emulsifying spheroids for colon-targeted delivery. Drug Delivery and Translational Research, 14(10): 1-17. https://doi.org/10.1007/s13346-024-01634-6.

Haddadzadegan, S., F. Dorkoosh y A. Bernkop-Schnürch. (2022). Oral delivery of therapeutic peptides and proteins: technology landscape of lipid-based nanocarriers. Advanced Drug Delivery Reviews, 182. https://doi.org/10.1016/j.addr.2021.114097.

Halwani, Abdulrahman A. (2022). Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics. MDPI. https://doi.org/10.3390/pharmaceutics14010106.

Herdiana, Y., N. Wathoni, S. Shamsuddin y M. Muchtaridi. (2022). Scale-up polymeric-based nanoparticles drug delivery systems: development and challenges. OpenNano, 7. https://doi.org/10.1016/j.onano.2022.100048.

Huo, T., C. Tao, M. Zhang, Q. Liu, B. Lin, Z. Liu, J. Zhang et al. (2018). Preparation and comparison of tacrolimus-loaded solid dispersion and self-microemulsifying drug delivery system by in vitro/in vivo evaluation. European Journal of Pharmaceutical Sciences, 114: 74-83. https://doi.org/10.1016/j.ejps.2017.12.002.

Jvus, Chakradhar, Naresh Kothuri, Sanjay Singh, Sonia Verma, Hasham Shafi, D. V. Siva Reddy, Ashwini Kedar et al. (2024). A quality by design approach for developing SNEDDS loaded with vemurafenib for enhanced oral bioavailability. AAPS PharmSciTech, 25(1). https://doi.org/10.1208/s12249-023-02725-2.

Kamel, Amany O. y Azza A. Mahmoud. (2013). Enhancement of human oral bioavailability and in vitro antitumor activity of rosuvastatin via spray dried self-nanoemulsifying drug delivery system. Journal of Biomedical Nanotechnology, 9(1): 26-39. https://doi.org/10.1166/JBN.2013.1469.

Karri, Sravani, Sanjay Sharma y Ginpreet Kaur. (2024). Design, characterization and pharmacokinetic studies of anti-malarial drug artemisinin by optimized self-emulsifying nano drug delivery system (SNEDDS). Journal of Dispersion Science and Technology, 45(5): 969-79. https://doi.org/10.1080/01932691.2023.2190390.

Khairnar, S. V., P. Pagare, A. Thakre, A. R. Nambiar, V. Junnuthula, M. C. Abraham, P. Kolimi, D. Nyavanandi y S. Dyawanapelly. (2022). Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics, 14(9). https://doi.org/10.3390/pharmaceutics14091886.

Khizar, S., N. Alrushaid, F. Alam Khan, N. Zine, N. Jaffrezic-Renault, A. Errachid y A. Elaissari. (2023). Nanocarriers based novel and effective drug delivery system. International Journal of Pharmaceutics, 632. https://doi.org/10.1016/j.ijpharm.2022.122570.

Khoa Huynh, Nguyen Anh, Thi Hong Tuoi Do, Xuan Loc Le, Truc Thanh Ngoc Huynh, Duc Hanh Nguyen, Ngoc Khue Tran, Cao Thuy Ha Lan Tran, Dai Hai Nguyen y Cong Tri Truong. (2022). Development of softgel capsules containing cyclosporine an encapsulated pine essential oil based self-microemulsifying drug delivery system. Journal of Drug Delivery Science and Technology, 68(febrero): 103115. https://doi.org/10.1016/J.JDDST.2022.103115.

Kim, D. W., M. S. Kwon, A. M. Yousaf, P. Balakrishnan, J. H. Park, D. S. Kim, B.-J. Lee et al. (2014). Comparison of a solid SMEDDS and solid dispersion for enhanced stability and bioavailability of clopidogrel napadisilate. Carbohydrate Polymers, 114:365-74. https://doi.org/10.1016/j.carbpol.2014.08.034.

Knaub, Katharina, Tina Sartorius, Tanita Dharsono, Roland Wacker, Manfred Wilhelm y Christiane Schön. (2019). A novel self-emulsifying drug delivery system (SEDDS) based on Vesisorb® formulation technology improving the oral bioavailability of cannabidiol in healthy subjects. Molecules, 24(16): 1-13. https://doi.org/10.3390/molecules24162967.

Kumar, Gannu P. y Pogaku Rajeshwarrao. (2011). Nonionic surfactant vesicular systems for effective drug delivery – An overview. Acta Pharmaceutica Sinica B, 1(4): 208-19. https://doi.org/10.1016/j.apsb.2011.09.002.

Lawrence, M. J. y G. D. Rees. (2000). Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, 45(1): 89-121. https://doi.org/10.1016/S0169-409X(00)00103-4.

Liu, Yifan, Yushan Liang, Jing Yuhong, Peng Xin, Jia Li Han, Runhe Zhu, Mingxun Zhang et al. (2024). Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Design, Development and Therapy. Dove Medical Press Ltd. https://doi.org/10.2147/DDDT.S447496.

Mahmood, Arshad y Andreas Bernkop-Schnürch. (2019). SEDDS: a game changing approach for the oral administration of hydrophilic macromolecular drugs. Advanced Drug Delivery Reviews, 142(marzo): 91-101. https://doi.org/10.1016/J.ADDR.2018.07.001.

Mahmood, Arshad, Felix Prüfert, Nuri Ari Efiana, Muhammad Imtiaz Ashraf, Martin Hermann, Shah Hussain y Andreas Bernkop-Schnürch. (2016). Cell-penetrating self-nanoemulsifying drug delivery systems (SNEDDS) for oral gene delivery. Expert Opinion on Drug Delivery, 13(11): 1503-12. https://doi.org/10.1080/17425247.2016.1213236.

Mandić, J., A. Zvonar Pobirk, F. Vrečer y M. Gašperlin. (2017). Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective. International Journal of Pharmaceutics, 533(2): 335-45. https://doi.org/10.1016/j.ijpharm.2017.05.036.

Mazayen, Zaed M., Amira M. Ghoneim, Rasha S. Elbatanony, Emad B. Basalious y Ehab R. Bendas. (2022). Pharmaceutical nanotechnology: from the bench to the market. Future Journal of Pharmaceutical Sciences, 8(1). https://doi.org/10.1186/s43094-022-00400-0.

Mendoza, Jennifer. (2024). Value of the nanomedicine market in Latin America from 2022 to 2027. STATISTA, septiembre 12. https://www.statista.com/statistics/824582/nanomedicine-market-value-latin-america/.

Milović, M., J. Djuriš, L. Djekić, D. Vasiljević y S. Ibrić. (2012). Characterization and evaluation of solid self-microemulsifying drug delivery systems with porous carriers as systems for improved carbamazepine release. International Journal of Pharmaceutics, 436(1-2): 58-65. https://doi.org/10.1016/j.ijpharm.2012.06.032.

Mishra, V., P. Nayak, N. Yadav, M. Singh, M. M. Tambuwala y A. A. A. Aljabali. (2021). Orally administered self-emulsifying drug delivery system in disease management: advancement and patents. Expert Opinion on Drug Delivery, 18(3): 315-32. https://doi.org/10.1080/17425247.2021.1856073.

Mu, Huiling, René Holm y Anette MuÏlertz. (2013). Lipid-based formulations for oral administration of poorly water-soluble drugs. International Journal of Pharmaceutics, 453(1): 215-24. https://doi.org/10.1016/J.IJPHARM.2013.03.054.

Murad, H., O. Ahmed, T. Ghabrah y M. Gari. (2020). Telmisartan self-nanoemulsifying drug delivery system, compared with standard telmisartan, more effectively improves hepatic fibrosis in rats. Dose-Response, 18(4). https://doi.org/10.1177/1559325820982190.

Nasef, Ahmed. (2021). Self-emulsifying drug delivery system: a novel approach for oral delivery of poorly water soluble drugs. Records of Pharmaceutical and Biomedical Sciences, 5(1): 52-58. https://doi.org/10.21608/rpbs.2021.52929.1086.

Nazir, I., M. H. Asim, A. Dizdarević y A. Bernkop-Schnürch. (2019). Self-emulsifying drug delivery systems: impact of stability of hydrophobic ion pairs on drug release. International Journal of Pharmaceutics, 561: 197-205. https://doi.org/10.1016/j.ijpharm.2019.03.001.

Nepal, Pushp R., Hyo Kyung Han y Hoo Kyun Choi. (2010). Preparation and in vitro-in vivo evaluation of Witepsol® H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q10. European Journal of Pharmaceutical Sciences, 39(4): 224-32. https://doi.org/10.1016/J.EJPS.2009.12.004.

Nguyen, T. T., T. T. Dung Nguyen, T. K. Vo, N. -M. -A. Tran, M. K. Nguyen, T. Van Vo y G. Van Vo. (2021). Nanotechnology-based drug delivery for central nervous system disorders. Biomedicine and Pharmacotherapy, 143. https://doi.org/10.1016/j.biopha.2021.112117.

Oishi, S., S. -I. Kimura, S. Noguchi, M. Kondo, Y. Kondo, Y. Shimokawa, Y. Iwao y S. Itai. (2018). New scale-down methodology from commercial to lab scale to optimize plant-derived soft gel capsule formulations on a commercial scale. International Journal of Pharmaceutics, 535(1-2): 371-78. https://doi.org/10.1016/j.ijpharm.2017.11.029.

Onugwu, A. L., C. S. Nwagwu, O. S. Onugwu, A. C. Echezona, C. P. Agbo, S. A. Ihim, P. Emeh, P. O. Nnamani, A. A. Attama y V. V. Khutoryanskiy. (2023). Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. Journal of Controlled Release, 354: 465-88. https://doi.org/10.1016/j.jconrel.2023.01.018.

Operti, M. C., A. Bernhardt, J. Pots, V. Sincari, E. Jager, S. Grimm, A. Engel et al. (2022). Translating the manufacture of immunotherapeutic PLGA nanoparticles from lab to industrial scale: process transfer and in vitro testing. Pharmaceutics, 14(8). https://doi.org/10.3390/pharmaceutics14081690.

Park, H., E. -S. Ha y M. -S. Kim. (2020). Current status of supersaturable self-emulsifying drug delivery systems. Pharmaceutics, 12(4). https://doi.org/10.3390/pharmaceutics12040365.

Patel, H., J. Li, L. Bo, R. Mehta, C. R. Ashby, S. Wang, W. Cai y Z. -S. Chen. (2024). Nanotechnology-based delivery systems to overcome drug resistance in cancer. Medical Review, 4(1): 5-30. https://doi.org/10.1515/mr-2023-0058.

Procedence Research. (2025). Nanomedicine market size to hit USD 627.03 billion by 2034. https://www.precedenceresearch.com/nanomedicine-market.

Rapp, Bastian E. (2017). Chapter 20 – Surface tension. En Bastian E. Rapp (ed.), Microfluidics: modelling, mechanics and mathematics, 421-44. Oxford: Elsevier. https://doi.org/https://doi.org/10.1016/B978-1-4557-3141-1.50020-4.

Rehman, F. U., A. Farid, S. U. Shah, M. J. Dar, A. U. Rehman, N. Ahmed, S. A. Rashid et al. (2022). Self-emulsifying drug delivery systems (SEDDS): measuring energy dynamics to determine thermodynamic and kinetic stability. Pharmaceuticals, 15(9). https://doi.org/10.3390/ph15091064.

Sahu, T., Y. K. Ratre, S. Chauhan, L. V. K. S. Bhaskar, M. P. Nair y H. K. Verma. (2021). Nanotechnology based drug delivery system: current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology, 63. https://doi.org/10.1016/j.jddst.2021.102487.

Santiago-Villarreal, O., L. Rojas-González, M. J. Bernad-Bernad y J. E. Miranda-Calderón. (2023). Self-emulsifying drug delivery system for praziquantel with enhanced ex vivo permeation. Journal of Pharmaceutical Innovation, 18(2): 525-37. https://doi.org/10.1007/s12247-022-09649-7.

Shahzadi, I., A. Dizdarević, N. A. Efiana, B. Matuszczak y A. Bernkop-Schnürch. (2018). Trypsin decorated self-emulsifying drug delivery systems (SEDDS): key to enhanced mucus permeation. Journal of Colloid and Interface Science, 531:253-60. https://doi.org/10.1016/j.jcis.2018.07.057.

Shakeel, Faiyaz, Nazrul Haq, Mahmoud El-Badry, Fars K. Alanazi e Ibrahim A. Alsarra. (2013). Ultra fine super self-nanoemulsifying drug delivery system (SNEDDS) enhanced solubility and dissolution of indomethacin. Journal of Molecular Liquids, 180(abril): 89-94. https://doi.org/10.1016/J.MOLLIQ.2013.01.008.

Sharma, V. K., A. Koka, J. Yadav, A. K. Sharma y R. K. Keservani. (2016). Self-micro emulsifying drug delivery systems: a strategy to improve oral bioavailability. Ars Pharmaceutica, 57(3): 97-109. https://doi.org/10.4321/S2340-98942016000300001.

Staden, Daniélle van, Jeanetta du Plessis y Joe Viljoen. (2020). Development of topical/transdermal self-emulsifying drug delivery systems, not as simple as expected. Scientia Pharmaceutica. MDPI AG. https://doi.org/10.3390/scipharm88020017.

Tashish, Ahmad Yousef, Ahmad Abdul Wahhab Shahba, Fars Kaed Alanazi y Mohsin Kazi. (2023). Unlocking the potential: synergistic effects of solid SNEDDS and lyophilized solid dispersion to enhance stability attributes. Frontiers in Bioscience (Landmark edition), 28(12): 349. https://doi.org/10.31083/j.fbl2812349.

Tran, P. H. -L., T. T. -D. Tran, Z. Z. Piao, T. Van Vo, J. B. Park, J. Lim, K. T. Oh, Y. -S. Rhee y B. -J. Lee. (2013). Physical properties and in vivo bioavailability in human volunteers of isradipine using controlled release matrix tablet containing self-emulsifying solid dispersion. International Journal of Pharmaceutics, 450(1-2): 79-86. https://doi.org/10.1016/j.ijpharm.2013.04.022.

Uttreja, P., I. Karnik, A. Adel Ali Youssef, N. Narala, R. M. Elkanayati, S. Baisa, N. D. Alshammari, S. Banda, S. K. Vemula y M. A. Repka. (2025). Self-emulsifying drug delivery systems (SEDDS): transition from liquid to solid – A comprehensive review of formulation, characterization, applications, and future trends. Pharmaceutics, 17(1). https://doi.org/10.3390/pharmaceutics17010063.

Venkata Ramana Rao, Sripriya y Jun Shao. (2008). Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: I. Formulation development. International Journal of Pharmaceutics, 362(1): 2-9. https://doi.org/https://doi.org/10.1016/j.ijpharm.2008.05.018.

Vithani, Kapilkumar, Vincent Jannin, Colin W. Pouton y Ben J. Boyd. (2019). Colloidal aspects of dispersion and digestion of self-dispersing lipid-based formulations for poorly water-soluble drugs. Advanced Drug Delivery Reviews, 142(marzo): 16-34. https://doi.org/10.1016/J.ADDR.2019.01.008.

Vithani, K., A. Hawley, V. Jannin, C. Pouton y B. J. Boyd. (2018). Solubilisation behaviour of poorly water-soluble drugs during digestion of solid SMEDDS. European Journal of Pharmaceutics and Biopharmaceutics, 130: 236-46. https://doi.org/10.1016/j.ejpb.2018.07.006.

Williams, H. D., N. L. Trevaskis, S. A. Charman, R. M. Shanker, W. N. Charman, C. W. Pouton y C. J. H. Porter. (2013). Strategies to address low drug solubility in discovery and development. Pharmacological Reviews, 65(1): 315-499. https://doi.org/10.1124/pr.112.005660.

Zhang, Zichen, Yi Lu, Jianping Qi y Wei Wu. (2021). An update on oral drug delivery via intestinal lymphatic transport. Acta Pharmaceutica Sinica B. Chinese Academy of Medical Sciences. https://doi.org/10.1016/j.apsb.2020.12.022.