Metallic nanoparticles: an alternative against resistant species causing candidiasis

Main Article Content

Luis Enrique García-Marín
https://orcid.org/0000-0002-7352-2999
Ernestina Castro-Longoria
https://orcid.org/0000-0002-7464-8964

Abstract

Candidiasis is a disease caused by different Candida species, with C. albicans being the most common in clinical isolates worldwide. This disease is a problem for the health sector, due to the multiresistance that some Candida species present to the antifungals traditionally used. C. glabrata and C. auris are two species frequently reported as resistant to azoles, echinocandins and polyenes. Therefore, the search for new antifungals is a priority. Nanotechnology offers new alternatives, such as the use of metallic nanoparticles (NPs). In particular, silver and copper NPs have been reported as efficient inhibition agents against C. albicans. This paper presents the most relevant studies that have evaluated the effect of metallic NPs in Candida spp., as well as the most promising results.

Downloads

Article Details

How to Cite
García-Marín, L. E., & Castro-Longoria, E. (2023). Metallic nanoparticles: an alternative against resistant species causing candidiasis. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 16(31), 1e-14e. https://doi.org/10.22201/ceiich.24485691e.2023.31.69780
Section
Review articles

References

Abdallah, B. M., y Ali, E. M. (2021). Green synthesis of silver nanoparticles using the Lotus lalambensis aqueous leaf extract and their anti-candidal activity against oral candidiasis. ACS Omega, 6(12): 8151-8162. https://doi.org/10.1021/acsomega.0c06009. DOI: https://doi.org/10.1021/acsomega.0c06009

Achudhan, D., Vijayakumar, S., Malaikozhundan, B., Divya, M., Jothirajan, M., Subbian, K., González-Sánchez, Z. I., Mahboob, S., Al-Ghanim, K. A. y Vaseeharan, B. (2020). The antibacterial, antibiofilm, antifogging and mosquitocidal activities of titanium dioxide (TiO2) nanoparticles green-synthesized using multiple plants extracts. Journal of Environmental Chemical Engineering, 8(6), 104521. https://doi.org/10.1016/j.jece.2020.104521. DOI: https://doi.org/10.1016/j.jece.2020.104521

Arendrup, M. C., Patterson, T. F. (2017). Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment. J. Infect. Dis., 216: S445-S451. https://doi.org/10.1093/infdis/jix131. DOI: https://doi.org/10.1093/infdis/jix131

Biasoli, M. S., Tosello, M. E., Luque, A. G. y Magaró, H. M. (2010). Adherence, colonization and dissemination of Candida dubliniensis and other Candida species. Medical Mycology, 48(2): 291-297. https://doi.org/10.3109/13693780903114942. DOI: https://doi.org/10.3109/13693780903114942

Castro-Longoria, E., Garibo-Ruiz, D., Martínez-Castro, S. (2017). Myconanotechnology to treat infectious diseases: a perspective. in fungal nanotechnology. Berlin/Heidelberg, Germany: Springer, 235-261. DOI: https://doi.org/10.1007/978-3-319-68424-6_12

Cheong, Y.-K., Arce, M. P., Benito, A., Chen, D., Luengo Crisóstomo, N., Kerai, L. V, Rodríguez, G., Valverde, J. L., Vadalia, M., Cerpa-Naranjo, A. y Ren, G. (2020). Synergistic antifungal study of PEGylated graphene oxides and copper nanoparticles against Candida albicans. Nanomaterials, 10(5). https://doi.org/10.3390/nano10050819. DOI: https://doi.org/10.3390/nano10050819

Chowdhary, A., Sharma, C., Meis, J. F. (2017). Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog, 13(5): e1006290. https://doi.org/10.1371/journal.ppat.1006290. DOI: https://doi.org/10.1371/journal.ppat.1006290

Dashtizadeh, Z., Jookar Kashi, F., y Ashrafi, M. (2021). Phytosynthesis of copper nanoparticles using Prunus mahaleb L. and its biological activity. Materials Today Communications, 27(mayo). https://doi.org/10.1016/j.mtcomm.2021.102456. DOI: https://doi.org/10.1016/j.mtcomm.2021.102456

Din, M. I. y Rehan, R. (2017). Synthesis, characterization, and applications of copper nanoparticles. Analytical Letters, 50(1): 50-62. https://doi.org/10.1080/00032719.2016.1172081. DOI: https://doi.org/10.1080/00032719.2016.1172081

Elbahnasawy, M. A., Shehabeldine, A. M., Khattab, A. M., Amin, B. H. y Hashem, A. H. (2021). Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: Characterization and anticandidal activity. Journal of Drug Delivery Science and Technology, 62, 102401. https://doi.org/10.1016/j.jddst.2021.102401. DOI: https://doi.org/10.1016/j.jddst.2021.102401

El-Sherbiny, G. M., Lila, M. K., Shetaia, Y. M., Elswify, M. M. y Mohamed, S. S. (2020). Antimicrobial activity of biosynthesised silver nanoparticles against multidrug-resistant microbes isolated from cancer patients with bacteraemia and candidaemia. Indian Journal of Medical Microbiology, 38(3-4): 371-378. https://doi.org/10.4103/ijmm.IJMM_20_299. DOI: https://doi.org/10.4103/ijmm.IJMM_20_299

García-Marín, L. E., Juárez-Moreno, K., Vilchis-Néstor, A. R. y Castro-Longoria, E. (2022). Highly antifungal activity of biosynthesized copper oxide nanoparticles against Candida albicans. Nanomaterials, 12(21). https://doi.org/10.3390/nano12213856. DOI: https://doi.org/10.3390/nano12213856

Garnacho-Montero, J., Díaz-Martín, A., De Piappón, M. R.-P. y García-Cabrera, E. (2012). Infección fúngica invasiva en los pacientes ingresados en las áreas de críticos. Enfermedades Infecciosas y Microbiologia Clínica, 30(6): 338–343. https://doi.org/10.1016/j.eimc.2012.02.011. DOI: https://doi.org/10.1016/j.eimc.2012.02.011

Ghosh Chaudhuri, R. y Paria, S. (2012). Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews, 112(4), 2373-2433. https://doi.org/10.1021/cr100449n. DOI: https://doi.org/10.1021/cr100449n

Guzman, M., Dille, J., y Godet, S. (2012). Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine, 8(1): 37-45. https://doi.org/10.1016/j.nano.2011.05.007. DOI: https://doi.org/10.1016/j.nano.2011.05.007

Hwang, I., Lee, J., Hwang, J. H., Kim, K.-J. y Lee, D. G. (2012). Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. The FEBS Journal, 279(7): 1327-1338. https://doi.org/10.1111/j.1742-4658.2012.08527.x. DOI: https://doi.org/10.1111/j.1742-4658.2012.08527.x

Ingle, A. P., Duran, N. Rai, M. (2014). Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl. Microbiol. Biotechnol., 98: 1001-1009. https://doi.org/10.1007/s00253-013-5422-8. DOI: https://doi.org/10.1007/s00253-013-5422-8

Ijaz, I., Gilani, E., Nazir, A. y Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13(3): 59-81. https://doi.org/10.1080/17518253.2020.1802517. DOI: https://doi.org/10.1080/17518253.2020.1802517

Karkowska-Kuleta, J., Kulig, K., Karnas, E., Zuba-Surma, Woznicka, Olga, Pyza, E., Kuleta, P., Osyezka, A., Kozik, MR., Kozik, A. (2020). Characteristics of extracellular vesicles released by the pathogenic yeast-like fungi Candida glabrata, Candida parapsilosis and Candida tropicalis. Cells, 9(7): 1722 https://doi.org/10.3390/cells9071722. DOI: https://doi.org/10.3390/cells9071722

Khaled, Y. y Pahuja, B. K. (2019). Identifying the different kinds of oral Candida species in denture wearing patients. EC Dental Science, 18(7): 1428-1434.

Lakshminarayanan, R., Ye, E., Young, D. J., Li, Z. y Loh, X. J. (2018). Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Advanced Healthcare Materials, 7(13), 1701400. https://doi.org/10.1002/adhm.201701400. DOI: https://doi.org/10.1002/adhm.201701400

Lazo, V., Hernández, G. y Méndez, R. (2018). Candidiasis sistémica en pacientes críticos, factores predictores de riesgo. Horizonte Médico (Lima), 18(1): 75-85. http://dx.doi.org/10.24265/horizmed.2018.v18n1.11. DOI: https://doi.org/10.24265/horizmed.2018.v18n1.11

Lee, B., Lee, M. J., Yun, S. J., Kim, K., Choi, I.-H. y Park, S. (2019). Silver nanoparticles induce reactive oxygen species-mediated cell cycle delay and synergistic cytotoxicity with 3-bromopyruvate in Candida albicans, but not in Saccharomyces cerevisiae. International Journal of Nanomedicine, 14, 4801. https://doi.org/10.2147/IJN.S205736. eCollection 2019. DOI: https://doi.org/10.2147/IJN.S205736

Lone, S. A. y Ahmad, A. (2019). Candida auris — The growing menace to global health. Mycoses, 62(8): 620-637. https://doi.org/10.1111/myc.12904. DOI: https://doi.org/10.1111/myc.12904

Martínez, A., Apip, C., Meléndrez, M. F., Domínguez, M., Sánchez‐Sanhueza, G., Marzialetti, T. y Catalán, A. (2021). Dual antifungal activity against Candida albicans of copper metallic nanostructures and hierarchical copper oxide marigold‐like nanostructures grown in situ in the culture medium. Journal of Applied Microbiology, 130(6): 1883-1892. https://doi.org/10.1111/jam.14859. DOI: https://doi.org/10.1111/jam.14859

Martínez-Andrade, J. M., Avalos-Borja, M., Vilchis-Néstor, A. R., Sánchez-Vargas, L. O. y Castro-Longoria, E. (2018). Dual function of EDTA with silver nanoparticles for root canal treatment–A novel modification. PLoS ONE, 13(1): 1-19. https://doi.org/10.1371/journal.pone.0190866. DOI: https://doi.org/10.1371/journal.pone.0190866

Mauricio, M. D., Marchio, P., Valles, S. L., Aldasoro, M., Herance, J. R., Rocha, M., Vila, J. M., y Víctor, V. M. (2018). Review article nanoparticles in medicine : a focus on vascular oxidative stress. https://doi.org/10.1155/2018/6231482. DOI: https://doi.org/10.1155/2018/6231482

McCarty, T. P., White, C. M. y Pappas, P. G. (2021). Candidemia and invasive candidiasis. Infectious Disease Clinics of North America, 35(2): 389-413. https://doi.org/10.1016/j.idc.2021.03.007. DOI: https://doi.org/10.1016/j.idc.2021.03.007

McCullough, M. J., Ross, B. C. y Reade, P. C. (1996). Candida albicans: a review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. International Journal of Oral and Maxillofacial Surgery, 25(2): 136-144. https://doi.org/10.1016/S0901-5027(96)80060-9. DOI: https://doi.org/10.1016/S0901-5027(96)80060-9

Mixão, V. de P. (2020). Hybridization in Candida yeast pathogens. September 2019. https://widgets.ebscohost.com/prod/customerspecific/ns000545/customproxy.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=edstdx&AN=edstdx.10803.670103&amp%0Alang=pt-pt&site=eds-live&scope=site.

Mohammadi, M., Shahisaraee, S. A., Tavajjohi, A., Pournoori, N., Muhammadnejad, S., Mohammadi, S. R., Poursalehi, R. y Delavari H, H. (2019). Green synthesis of silver nanoparticles using Zingiber officinale and Thymus vulgaris extracts: characterization, cell cytotoxicity, and its antifungal activity against Candida albicans in comparison to fluconazole. IET Nanobiotechnology, 13(2): 114-119. https://doi.org/10.1049/iet-nbt.2018.5146. DOI: https://doi.org/10.1049/iet-nbt.2018.5146

Mudiar, R. y Kelkar-Mane, V. (2020). Original research article (experimental): Targeting fungal menace through copper nanoparticles and Tamrajal. Journal of Ayurveda and Integrative Medicine, 11(3): 316-321. https://doi.org/10.1016/j.jaim.2018.02.134. DOI: https://doi.org/10.1016/j.jaim.2018.02.134

Murillo-Rábago, E. I., Vilchis-Néstor, A. R., Juárez-Moreno, K., García-Marin, L. E., Quester, K., Castro-Longoria, E. (2022). Optimized synthesis of small and stable silver nanoparticles using intracellular and extracellular components of fungi: an alternative for bacterial inhibition. Antibiotics, 11(6). DOI: https://doi.org/10.3390/antibiotics11060800

Niknejad, F., Nabili, M., Ghazvini, R. D. y Moazeni, M. (2015). Green synthesis of silver nanoparticles: advantages of the yeast Saccharomyces cerevisiae model. Current Medical Mycology, 1(3): 17. https://doi.org/10.18869/acadpub.cmm.1.3.17. DOI: https://doi.org/10.18869/acadpub.cmm.1.3.17

Padmavathi, A. R., Das, A., Priya, A., Sushmitha, T. J., Pandian, S. K. y Toleti, S. R. (2020). Impediment to growth and yeast-to-hyphae transition in Candida albicans by copper oxide nanoparticles. Biofouling, 36(1): 56-72. https://doi.org/10.1080/08927014.2020.1715371. DOI: https://doi.org/10.1080/08927014.2020.1715371

Pappas, P. G., Kauffman, C. A., Andes, D. R., Clancy, C. J., Marr, K. A., Ostrosky-zeichner, L., Reboli, A. C., Schuster, M. G., Vázquez, J. A. y Walsh, T. J. (n.d.), Zaoutis T. E., Sobel, J. D. (2016). Executive summary: clinical practice guideline for the management of candidiasis: 2016. Update by the Infectious Diseases Society of America. Clin. Infect. Dis, 62(4): 409-417. DOI: https://doi.org/10.1093/cid/civ1194

Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L. y Kullberg, B. J. (2018). Invasive candidiasis. Nature Reviews Disease Primers, 4(1): 1-20. https://doi.org/10.1038/nrdp.2018.26. DOI: https://doi.org/10.1038/nrdp.2018.26

Pastrana-Gómez, C. A., Almonacid-Urrego, C. C., Velasco-Montejo, B. E., Mendieta-Zerón, H. y Cuevas-Yáñez, E. (2020). Antimycotic sensitivity evaluation against Candida ATCC species of 1,2,3-triazoles derived from 5-chloro-2(2,4-dichlorophenoxy)phenol. Medicinal Chemistry Research, 29(3): 417-425. https://doi.org/10.1007/s00044-019-02490-7. DOI: https://doi.org/10.1007/s00044-019-02490-7

Pfaller, M. A. y Diekema, D. (2007). Epidemiology of invasive candidiasis: a persistent public health problem. Clinical Microbiology Reviews, 20(1): 133-163. DOI: https://doi.org/10.1128/CMR.00029-06

Pillai, A. M., Sivasankarapillai, V. S., Rahdar, A., Joseph, J., Sadeghfar, F., Anuf A, R., Rajesh, K. y Kyzas, G. Z. (2020). Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure, 1211, 128107. https://doi.org/10.1016/j.molstruc.2020.128107. DOI: https://doi.org/10.1016/j.molstruc.2020.128107

Silva, S., Negri, M., Henriques, M., Oliveira, R., Williams, D. W. y Azeredo, J. (2012). Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiology Reviews, 36(2): 288-305. https://doi.org/10.1111/j.1574-6976.2011.00278.x. DOI: https://doi.org/10.1111/j.1574-6976.2011.00278.x

Talapko, J., Juzbašić, M., Matijević, T., Pustijanac, E., Bekić, S., Kotris, I., y Škrlec, I. (2021). Candida albicans-the virulence factors and clinical manifestations of infection. Journal of Fungi, 7(2): 1-19. https://doi.org/10.3390/jof7020079. DOI: https://doi.org/10.3390/jof7020079

Tang, Y., Fang, L., Xu, C., y Zhang, Q. (2017). Antibiotic resistance trends and mechanisms in the foodborne pathogen. Campylobacter. Animal Health Research Reviews, 18(2): 87-98. https://doi.org/10.1017/S1466252317000135. DOI: https://doi.org/10.1017/S1466252317000135

Tahvilian, R., Mahdi, M. y Falahi, H. (2019). Green synthesis and chemical characterization of copper nanoparticles using Allium saralicum leaves and assessment of their cytotoxicity, antioxidant, antimicrobial and cutaneous wound healing properties. Applied Organometallic Chemistry, 33(12): 1-16. https://doi.org/10.1002/aoc.5234. DOI: https://doi.org/10.1002/aoc.5234

Vázquez-Muñoz, R., Avalos-Borja, M. y Castro-Longoria, E. (2014). Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLOS ONE, 9(10): e108876. https://doi.org/10.1371/journal.pone.0108876. DOI: https://doi.org/10.1371/journal.pone.0108876

Yassin, M. T., Mostafa, A. A. F., Al-Askar, A. A. y Al-Otibi, F. O. (2022). Synergistic antifungal efficiency of biogenic silver nanoparticles with itraconazole against multidrug-resistant Candida strains. Crystals, 12(6): 816. https://doi.org/10.3390/cryst12060816. DOI: https://doi.org/10.3390/cryst12060816