The role of nanoscience and nanotechnology in the strife against the CCOVID-19 pandemic
Main Article Content
Abstract
On December 2019 a new virus appears in China, the SARS-CoV-2, which is the cause of a severe acute respiratory syndrome known as COVID-19. This virus is extremely contagious and thus a pandemic has been declared just after four months for the first reported case. To face this challenge, the development of efficient diagnosis methods, at least one alternative of treatment and to get a vaccine are the highest priorities for scientists. This review article explores the efforts that have been made from nanoscience and nanotechnology to improve the diagnosis methods, enhancing the sensitivity, selectivity and trueness of the currently available analytical techniques, but also pursuing the miniaturization of the devices. Some strategies to achieve this involve the surface plasmon resonance effect. Lastly, it is shown the most recent advances in a vaccine based on nanoparticles and messenger RNA; the synthesis methods, the formulation and the immunization mechanisms of this potential vaccine are explained. It is highly possible that the nanoparticle based vaccine will be able to efficiently immunize people, which would be one of the biggest milestones achieved by nanosciences and nonotechnology so far.
Article Details
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
References
Amanat, Fatima y Florian Krammer. (2020). SARS-CoV-2 vaccines: status report. Immunity, 52: 583-89. https://doi.org/10.1016/j.immuni.2020.03.007
Andersen, Kristian G., Andrew Rambaut, W. Ian Lipkin, Edward C. Holmes y Robert F. Garry. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26: 450-52. https://doi.org/10.1038/s41591-020-0820-9
Azzi, Lorenzo, Giulio Carcano, Francesco Gianfagna, Paolo Grossi, Daniela Dalla Gasperina, Angelo Genoni, Mauro Fasano, et al. (2020). Saliva is a reliable tool to detect SARS-CoV-2. Journal of Infection, 1-6. https://doi.org/10.1016/j.jinf.2020.04.005
Bar-on, Yinon M., Avi Flamholz, Rob Phillips y Ron Milo. (2020). “SARS-CoV-2 (Covid-19 ) by the numbers. eLife. https://elifesciences.org/articles/57309
Biacore. 2011. Sensor Chip CM5.
Bukreyev, Alexander, Elaine W. Lamirande, Ursula J. Buchholz, Leatrice N. Vogel, William R. Elkins, Marisa St Claire, Brian R. Murphy, Kanta Subbarao y Peter L. Collins. (2004). Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet, 363: 2122-27. https://doi.org/10.1016/S0140-6736(04)16501-X
Cascaella, M., M. Rajnik, A. Cuomo, S. C. Dulebohn y R. Di Napolli. (2020). Features, evaluation and treatment coronavirus (Covid-19).” StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK554776/
Chan, J. F. W., C. C. Y. Yip, K. K. W. To, T. H. C. Tang, S. C .Y. Wong, K. H. Leung, A. Y. F. Fung et al. (2020). Improved molecular diagnosis of Covid-19 by the novel, highly sensitive and specific Covid-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. Journal of Clinical Microbiology, 1-10.
Chen, Zhenhua, Zhigao Zhang, Xiangming Zhai, Yongyin Li, Li Lin, Hui Zhao, Lun Bian et al. (2020). Rapid and sensitive detection of anti-SARS-CoV-2 IgG using lanthanide-doped nanoparticles-based lateral flow immunoassay. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.0c00784
Cohen, Jon. (2020). Vaccine designers take first shots at Covid-19. Science, 368: 14-16. https://doi.org/10.1126/science.368.6486.14
Corman, Victor M., Olfert Landt, Marco Kaiser, Richard Molenkamp, Adam Meijer, Daniel K.W. Chu, Tobias Bleicker et al. (2020). Detection of 2019 novel coronavirus (2019-NCoV) by real-time RT-PCR. Eurosurveillance, 25: 1-8. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
Corman, Victor M., Doreen Muth, Daniela Niemeyer y Christian Drosten. (2018). Hosts and sources of endemic human coronaviruses. En M. Kielian, T. C. MettenleiteR y M. J. Roossinck (eds.), Advances in Virus Research, 100: 163-88. Elsevier Inc. https://doi.org/10.1016/bs.aivir.2018.01.001
Corman, Victor M. y Christian Drosten. (2020). Authors’ response : SARS-CoV-2 detection by real-time. Euro Surveill, 25. https://doi.org/https://doi. org/10.2807/1560-7917.ES.2020.25.21.2001035
Draz, Mohamed Shehata y Hadi Shafiee. (2018). Applications of gold nanoparticles in virus detection. Theranostics, 8: 1985-2017. https://doi.org/10.7150/thno.23856
Dutta, Jiten Chandra, Purnima Kumari Sharma y Hiranya Ranjan Thakur. (2017). Forty years of BioFETOLOGY: A Research Review. En S. Bhatia, K. Mishra, S. Tiwari y V. Singh, Advances in Intelligent Systems and Computing, 553: 68797. Springer. https://doi.org/10.1007/978-981-10-3770-2_65
Fang, Yaqing, Yiting Nie y Marshare Penny. (2020). Transmission dynamics of the Covid-19 outbreak and effectiveness of government interventions: A data-driven analysis. Journal of Medical Virology, 645-69. https://doi.org/10.1002/jmv.25750
Fu, Yajing, Yuanxiong Cheng y Yuntao Wu. (2020). Understanding SARS-CoV-2-mediated inflammatory responses: From mechanisms to potential therapeutic tools. Virologica Sinica, 12250: 1-6. https://doi.org/10.1007/s12250-020-00207-4
Galdiero, Stefania, Annarita Falanga, Mariateresa Vitiello, Marco Cantisani, Veronica Marra y Massimiliano Galdiero. (2011). Silver nanoparticles as potential antiviral agents. Molecules 16: 8894-8918. https://doi.org/10.3390/molecules16108894
Glass, Kathryn, Heath Kelly y Geoffry Norman Mercer. (2012). Pandemic influenza H1N1: Reconciling serosurvey data with estimates of the reproduction number. Epidemiology 23: 86-94. https://doi.org/10.1097/EDE.0b013e31823a44a5
Guo, Li, Lili Ren, Siyuan Yang, Meng Xiao, De Chang, Fan Yang, Charles S. de la Cruz et al., (2020). Profiling early humoral response to diagnose vovel coronavirus disease (Covid-19). Clinical Infectious Diseases an Official Publication of the Infectious Diseases Society of America, 1-8. https://doi.org/10.1093/cid/ciaa310
Hamming, I., W. Timens, M. L. C. Bulthuis, A. T. Lely, G. J. Navis y H. van Goor. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal of Pathology 203: 631-37. https://doi.org/10.1002/path.1570
Hamre, D. y J. J. Procknow. (1966). A new virus isolated from the human respiratory tract. Proceedings of the Society for Experimental Biology and Medicine, 12: 190-93.
He, Xi, Eric H. Y. Lau, Peng Wu, Xilong Deng, Jian Wang, Xinxin Hao, Yiu Chung Lau et al. (2020). Temporal dynamics in viral shedding and transmissibility of Covid-19. Nature Medicine, 26: 672-76. https://doi.org/10.1038/s41591-020-0869-5
Hoffmann, Markus, Hannah Kleine-Weber, Simon Schroeder, Nadine Krüger, Tanja Herrler, Sandra Erichsen, Tobias S. Schiergens et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181: 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
Huang, Chao, Tian Wen, Feng-juan Shi, Xiao-yan Zeng y Yong-jun Jiao. (2020a). Rapid detection of IgM antibodies against the SARS-CoV‑2 virus via colloidal gold nanoparticle-based lateral-flow assay. ACS OMEGA, 1-7. https://doi.org/10.1021/acsomega.0c01554
Huang, Chaolin, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Zhang, et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395: 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
Jiang, S., Y. He y S. Liu. (2005). SARS vaccine development. Emerging Infectious Diseases, 11: 1016-20. https://doi.org/10.1017/CBO9781107415324.004
Joe, Yun Haeng, Dae Hoon Park y Jungho Hwang. (2016). Evaluation of Ag nanoparticle coated air filter against aerosolized virus : anti-viral efficiency with dust loading. Journal of Hazardous Materials, 301: 547-53. https://doi.org/10.1016/j.jhazmat.2015.09.017
Khailany, Rozhgar A., Muhamad Safdar y Mehmet Ozaslan. (2020). Genomic characterization of a novel SARS-CoV-2. Gene Reports, 19: 100682
Kuba, Keiji, Yumiko Imai, Shuan Rao, Hong Gao, Feng Guo, Bin Guan, Yi Huan et al. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine, 11 (8): 875-79. https://doi.org/10.1038/nm1267
Lan, Jun, Jiwan Ge, Jinfang Yu, Sisi Shan, Huan Zhou, Shilong Fan, Qi Zhang et al. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581: 215-20. https://doi.org/10.1038/s41586-020-2180-5
Lee, Jaewook, Kenshin Takemura y Enoch Y. Park. (2017). Plasmonic nanomaterial-based optical biosensing platforms for virus detection. Sensors (Switzerland), 17: 1-12. https://doi.org/10.3390/s17102332
Li, Bin, Xiao Luo, Binbin Deng, Junfeng Wang, David W. McComb, Yimin Shi, Karin M.L. Gaensler et al. (2015). An orthogonal array optimization of lipid-like nanoparticles for MRNA delivery in vivo. Nano Letters, 15: 8099-8107. https://doi.org/10.1021/acs.nanolett.5b03528
Li, Huixiang y Lewis Rothberg. (2004). Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 101: 14036-39. https://doi.org/10.1073/pnas.0406115101
Li, Weijun y Francis C. Szoka. (2007). Lipid-based nanoparticles for nucleic acid delivery. Pharmaceutical Research, 24: 438-49. https://doi.org/10.1007/s11095-006-9180-5
Li, Zhengtu, Yongxiang Yi, Xiaomei Luo, Nian Xiong, Yang Liu, Shaoqiang Li, Ruilin Sun et al. (2020). Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. Journal of Medical Virology, 1-7. https://doi.org/10.1002/jmv.25727
Lipsitch, Marc, Ted Cohen, Ben Cooper, James M. Robins, Stefan Ma, Lyn James, Gowri Gopalakrishna et al. (2003). Transmission dynamics and control of severe acute respiratory syndrome. Science, 300: 1966-70. https://doi.org/10.1126/science.1086616
Liu, Ying, Albert A. Gayle, Annelies Wilder-Smith y Joacim Rocklöv. (2020). The reproductive number of Covid-19 is higher compared to SARS Coronavirus. Journal of Travel Medicine, 27: 1-4. https://doi.org/10.1093/jtm/taaa021
Long, Quan Xin, Bai Zhong Liu, Hai Jun Deng, Gui Cheng Wu, Kun Deng, Yao Kai Chen, Pu Liao et al. (2020). Antibody responses to SARS-CoV-2 in patients with Covid-19. Nature, Medicine, 1-15. https://doi.org/10.1038/s41591-020-0897-1
Luo, X., B. Li, X. Zhang, W. Zhao, A. Bratasz, B. Deng, D. W. McComb y Y. Dong. (2017). Dual-functional lipid-like nanoparticles for delivery of MRNA and MRI contrast agents. Nanoscale, 9: 1575-79.
Mahari, Subhasis, Akanksha Roberts, Deepshikha Shahdeo y Sonu Gandhi. (2020). ECovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of NCovid-19. BioRxiv, 2020.04.24. 059204. https://doi.org/10.1101/2020.04.24.059204
Mazurkova, N. A., Yu E. Spitsyna, N. V. Shikina, Z. R. Ismagilov, S. N. Zagrebel’nyi y E. I. Ryabchikova. (2010). Interaction of titanium dioxide nanoparticles with influenza virus. Nanotechnologies in Russia, 5: 417-20. https://doi.org/10.1134/S1995078010050174
Mokhtarzadeh, Ahad, Reza Eivazzadeh-Keihan, Paria Pashazadeh, Maryam Hejazi, Nasrin Gharaatifar, Mohammad Hasanzadeh, Behzad Baradaran y Miguel de la Guardia. (2017). Nanomaterial-based biosensors for detection of pathogenic virus. TrAC – Trends in Analytical Chemistry, 97: 445-57. https://doi.org/10.1016/j.trac.2017.10.005
Mycroft-West, Courtney J., Dunhao Su, Stefano Elli, Scott E Guimond, Gavin J Miller, Jeremy E Turnbull, Edwin A Yates, et al., (2020). The 2019 coronavirus (SARS-CoV-2) surface protein (spike) S1 receptor binding domain undergoes conformational change upon heparin binding. BioRxiv. https://doi.org/10.1101/2020.02.29.971093
Nalla, Arun K., Amanda M. Casto, Meei Li W. Huang, Garrett A. Perchetti, Reigran Sampoleo, Lasata Shrestha, Yulun Wei, Haiying Zhu, Keith R. Jerome y Alexander L. Greninger. (2020). Comparative performance of SARS-CoV-2 detection assays using seven different primer/probe sets and one assay kit. Journal of Clinical Microbiology, 58: 1-6. https://doi.org/10.1128/JCM.00557-20
Nanotech Surface. (2020). Coronavirus: nanotech surface sanitizes milan with nanomaterials remaining self-sterilized for years. (2020). https://statnano.com//news/67531/Coronavirus-Nanotech-Surface-Sanitizes-Milan-with-Nanomaterials-Remaining-Self-sterilized-for-Years
Pan, Y., D. Zhang, P. Yang, L. L. M. Poon y Q. Wang. (2020). Viral Load of SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases, 20: 411-12. https://doi.org/10.1016/S1473-3099(20)30113-4
Peeri, Noah C., Nistha Shrestha, Md Siddikur Rahman, Rafdzah Zaki, Zhengqi Tan, Saana Bibi, Mahdi Baghbanzadeh, Nasrin Aghamohammadi, Wenyi Zhang y Ubydul Haque. (2020). The SARS, MERS and novel coronavirus (Covid-19) epidemics, the newest and biggest global health threats: what lessons have we learned? International Journal of Epidemiology, 1-10. https://doi.org/10.1093/ije/dyaa033
Qiu, Guangyu, Zhibo Gai, Yile Tao, Jean Schmitt, Gerd A. Kullak-Ublick y Jing Wang. (2020). Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 1-10. https://doi.org/10.1021/acsnano.0c02439
Reichmuth, Andreas M., Matthias A. Oberli, Ana Jeklenec, Robert Langer y Daniel Blankschtein. (2016). MRNA vaccine delivery using lipid nanoparticles. Therapeutic Delivery, 7: 319-34. https://doi.org/10.4155/tde-2016-0006
Saif, Linda J. (2020). Vaccines for Covid-19: perspectives, prospects, and challenges based on candidate SARS, MERS, and animal coronavirus vaccines. European Medical Journal. https://doi.org/10.33590/emj/200324
Seo, Giwan, Geonhee Lee, Mi Jeong Kim, Seung-Hwa Baek, Minsuk Choi, Keun Bon Ku, Chang-Seop Lee et al. (2020). Rapid detection of Covid-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. https://doi.org/10.1021/acsnano.0c02823
Shang, Weilong, Yi Yang, Yifan Rao y Xiancai Rao. (2020). The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. Npj Vaccines, 5: 2-4. https://doi.org/10.1038/s41541-020-0170-0
Stroock, A. D. y G. J. McGraw. (2004). Investigation of the staggered herringbone mixer with a simple analytical model. Philosophical Transactions of the Royal Society of London. Series A, 362: 971-86.
Tang, Xiaolu, Changcheng Wu, Xiang Li, Yuhe Song, Xinmin Yao, Xinkai Wu, Yuange Duan et al. (2020). On the origin and continuing evolution of SARS-CoV-2. National Science Review, 1-12. https://doi.org/10.1093/nsr/nwaa036
To, Kelvin Kai Wang, Owen Tak Yin Tsang, Wai Shing Leung, Anthony Raymond Tam, Tak Chiu Wu, David Christopher Lung, Cyril Chik Yan Yip et al. (2020). Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. The Lancet Infectious Diseases, 20: 565-74. https://doi.org/10.1016/S1473-3099(20)30196-1
Tu, Yung Fang, Chian Shiu Chien, Aliaksandr A. Yarmishyn, Yi Ying Lin, Yung Hung Luo, Yi Tsung Lin, Wei Yi Lai et al. (2020). A review of SARS-CoV-2 and the ongoing clinical trials. International Journal of Molecular Sciences, 22: 1-19. https://doi.org/10.3390/ijms21072657
Wang, Dawei, Bo Hu, Chang Hu, Fangfang Zhu, Xing Liu, Jing Zhang, Binbin Wang et al. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA – Journal of the American Medical Association, 323: 1061-69. https://doi.org/10.1001/jama.2020.1585
Warnes, Sarah L., Zoë R. Little y C. William Keevil. (2015). Human coronavirus 229E remains infectious on common touch surface materials. MBio, 6: 1-10. https://doi.org/10.1128/mBio.01697-15
Wölfel, Roman, Victor M. Corman, Wolfgang Guggemos, Michael Seilmaier, Sabine Zange, Marcel A. Müller, Daniela Niemeyer et al. (2020). Virological assessment of hospitalized patients with Covid-2019. Nature, 581: 465-69. https://doi.org/10.1038/s41586-020-2196-x
World Health Organization. (2020a). WHO timeline – Covid-19. 2020. https://www.who.int/news-room/detail/27-04-2020-who-timeline-covid-19
World Health Organization. (2020b). WHO coronavirus disease (Covid-19) dashboard. 2020. https://covid19.who.int/
World Health Organization. (2020c). DRAFT landscape of Covid-19 candidate vaccines. 2020. https://www.who.int/who-documents-detail/draft-landscape-of-covid-19-candidate-vaccines
Wrapp, Daniel, Nianshuang Wang, Kizzmekia S. Corbett, Jory A. Goldsmith, Ching Lin Hsieh, Olubukola Abiona, Barney S. Graham y Jason S. McLellan. (2020). Cryo-EM structure of the 2019-NCoV spike in the prefusion conformation. Science, 367: 1260-63. https://doi.org/10.1126/science.aax0902
Yin, Shiyu, Ming Huang, Dengju Li y Ning Tang. (2020). Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and Non-SARS-CoV2. Journal of Thrombosis and Thrombolysis, 3-6. https://doi.org/10.1007/s11239-020-02105-8
Yuki, Koichi, Miho Fujiogi y Sophia Koutsogiannaki. (2020). Covid-19 pathophysiology: A review. Clinical Immunology, 215: 108427. https://doi.org/10.1016/j.clim.2020.108427
Zan, Ling, Wenjun Fa, Tianyou Peng y Zhen kui Gong. (2007). Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on hepatitis B virus. Journal of Photochemistry and Photobiology B: Biology, 86: 165-69. https://doi.org/10.1016/j.jphotobiol.2006.09.002
Zeng, Chunxi, Xucheng Hou, Jingyue Yan, Chengxiang Zhang, Wenqing Li, Weiyu Zhao, Shi Du y Yizhou Dong. (2020). Leveraging MRNAs sequences to express SARS-CoV-2 antigens in vivo. BioRxiv, 1-16.
https://doi.org/10.1101/2020.04.01.019877
Zhao, Pengxuan, Xucheng Hou, Jingyue Yan, Shi Du, Yonger Xue, Wenqing Li, Guangya Xiang y Yizhou Dong. (2020). Long-term storage of lipid-like nanoparticles for MRNA delivery. Bioactive Materials, 5: 358-63. https://doi.org/10.1016/j.bioactmat.2020.03.001
Zhao, Zhen, Haodong Cui, Wenxing Song, Xiaoling Ru, Wenhua Zhou y Xuefeng Yu. (2020). A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. BioRxiv, 518055.
https://doi.org/10.1101/2020.02.22.961268
Zheng, Jun. (2020). SARS-CoV-2: An emerging coronavirus that causes a global threat. International Journal of Biological Sciences, 16: 1678-85. https://doi.org/10.7150/ijbs.45053
Zheng, Shufa, Jian Fan, Fei Yu, Baihuan Feng, Bin Lou, Qianda Zou, Guoliang Xie et al. (2020). Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang Province, China, January-March 2020: Retrospective cohort study. The BMJ, 369: 1-8. https://doi.org/10.1136/bmj.m1443
Zhu, X., X. Wang, L. Han, T. Chen, L. Wang, H. Li, S. Li et al. (2020). Reverse transcription loop-mediated isothermal amplification combined with nanoparticles-based biosensor for diagnosis of Covid-19. MedRxiv.
https://doi.org/10.1101/2020.03.17.20037796
Ziegler, Carly G. K., Samuel J. Allon, Sarah K. Nyquist, Ian M. Mbano, Vincent N. Miao, Constantine N. Tzouanas, Yuming Cao et al. (2020). SARS-CoV-2 Receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 1016-35. https://doi.org/10.1016/j.cell.2020.04.035