Obtention and analysis of chemical kinetic expressions I. Obtaining kinetic data and criteria to avoid mass and energy transfer problems with heterogeneous catalysts

Main Article Content

Aline Villarreal
https://orcid.org/0000-0003-3476-0131
Rogelio Cuevas-García
https://orcid.org/0000-0002-4361-2280

Abstract

This article discusses the importance of kinetic analyses. The mathematical function of the chemical reaction rate expression (-RA) is introduced, including the expression used in the presence of a catalyst and the functionality of (-RA) with temperature and concentration. Several rate expressions such as power law expressions, theoretical expressions, and LHHW equations are described. It also revises typical reactors used in the laboratory and describes the criteria that can be used to disdain the mass and energy transfer problems commonly presented in catalytic assessments.

Downloads

Download data is not yet available.

Article Details

How to Cite
Villarreal, A., & Cuevas-García, R. (2020). Obtention and analysis of chemical kinetic expressions: I. Obtaining kinetic data and criteria to avoid mass and energy transfer problems with heterogeneous catalysts. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 14(26), 1e-23e. https://doi.org/10.22201/ceiich.24485691e.2021.26.69638
Section
Review articles

References

Berthelot, M. y Saint-Gilles, L. (1862). Recherches sur les affinités. (Translation: Studies on affinities). Annales Chimie et Physique, 65: 382-422.

Carberry, J. J. (1964). Designing laboratory catalytic reactors. Industrial Engineering Chemistry, 56: 39-46. https://doi.org/10.1021/ie50659a007

Del Río, E., Collins, S. E., Aguirre, A., Chen, X., Delgado, J. J., Calvino, J. J., Bernal, S. (2014). Reversible deactivation of a Au/Ce0.62Zr0.38O2 catalyst in CO oxidation: A systematic study of CO2-triggered carbonate inhibition. Journal of Catalysis, 316: 210-218. https://doi.org/10.1016/j.jcat.2014.05.016

Ergun, S. (1952). Fluid flow through packed columns. Chemical engineering progress, 48: 89-94.

Fogler, H. S. (1992). Elements of chemical reaction engineering, 2a ed. Prentice-Hall, Englewood Cliffs.

Gleaves, J. T., Ebner, J. R. y Kuechler, T. C. (1988). Temporal analysis of products (TAP) —A unique catalyst evaluation system with submillisecond time resolution. Catalysis Reviews, 30 (1): 49-116. https://doi.org/10.1080/01614948808078616

Perego, C. y S. Peratello, S. (1999). Experimental methods in catalytic kinetics. Catalysis Today, 52: 133-145. https://doi.org/10.1016/S0920-5861(99)00071-1

Pérez-Ramírez, J., R. J. Berger, G. Mul, F. Kapteijn, J. Moulijn. (2000). The six-flow reactor technology. A review on fast catalyst screening and kinetic studies. Catalysis Today, 60: 93-109. https://doi.org/10.1016/S0920-5861(00)00321-7

Siegel, S., J. Outlaw y N. Garti. (1978). The structure of reactive sites on platinum metal catalysts for the hydrogenation of unsaturated hydrocarbons. Journal of Catalysis, 52 (1): 102-115. https://doi.org/10.1016/0021-9517(78)90127-6

Smith, J. M. y J. M. Smith. (1981). Chemical engineering kinetics/Ingeniería de la cinética química, 2da ed./6ta reimpr. Mc Graw Hill/CECSA.

Weisz, B., C. D. Prater. (1954). Interpretation of measurements in experimental catalysis. En W. G. Frankenburg, V. I. Komarewsky, E. K. Rideal (eds.), Advances in catalysis, 143-196. Academic Press. https://doi.org/10.1016/S0360-0564(08)60390-9