Analysis and relevance of catalytic processes to remove sulfur from fossil fuels

Main Article Content

Marco Antonio Álvarez-Amparán
http://orcid.org/0000-0003-0624-9985
Luis Cedeño-Caero
http://orcid.org/0000-0002-9873-0866

Abstract

Nowadays processes to remove pollutants such as sulfur have become very important by the environmental regulations imposed. Therefore, the presence of sulfur as natural component on the crude oil formation is commented in this work. The main reasons to remove sulfur of the crude oil fractions were discussed. The refining process and conventional technology to remove sulfur from the crude oil fractions were explained. Complementary or alternative technologies to remove sulfur to reach international regulations were analyzed. Finally, future expectations about the use of fossil and non-fossil fuels were discussed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Álvarez-Amparán, M. A., & Cedeño-Caero, L. (2020). Analysis and relevance of catalytic processes to remove sulfur from fossil fuels. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 14(26), 1e-21e. https://doi.org/10.22201/ceiich.24485691e.2021.26.69633
Section
Review articles

References

Ajanovic, A., Haas, R. (2019). Economic and environmental prospects for battery electric and fuel cell vehicles: A review. Fuel Cells, 19(5): 515-529. https://doi.org/10.1002/fuce.201800171

Ateka, A., Ereña, J., Bilbao, J., Aguayo, A. T. (2020). Strategies for the intensification of CO2 valorization in the one-step dimethyl ether synthesis process. Industrial & Engineering Chemistry Research, 59(2): 713-722. https://doi.org/10.1021/acs.iecr.9b05749

Babich, I., Moulijn, J. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel, 82: 607-631. https://doi.org/10.1016/S0016-2361(02)00324-1

Barbosa, A. L., Vega, A. F., De Rio, Amador E. (2014). Hidrodesulfuración de crudos de petróleo: base para el mejoramiento de combustibles. Una revisión. Avances en Ciencias e Ingeniería, 5(3): 37-60. https://www.redalyc.org/articulo.oa?id=323632128003

Beydoun, Z. R. (2007). Prehistoric, ancient and mediaeval occurrences and uses of hydrocarbons in the Greater Middle East region. Journal of Petroleum Geology, 20(1): 91-95. https://doi.org/10.1111/j.1747-5457.1997.tb00757.x

Bateni, H., Able, C. (2019). Development of heterogeneous catalysts for dehydration of methanol to dimethyl ether: A review. Catalysis in Industry, 11: 7-33. https://doi.org/10.1134/S2070050419010045

Bordenave, M. L. (1993). Applied petroleum geochemistry. France: Technip- Rueil-Malmaison.

Cárdenas-Guerra, J. C., López-Arenas, T., Lobo-Oehmichen, R., Pérez-Cisneros, E. S. (2010). A reactive distillation process for deep hydrodesulfurization of diesel: Multiplicity and operation aspects. Computers & Chemical Engineering, 34(2): 196-209. https://doi.org/10.1016/j.compchemeng.2009.07.014

Chandran, D., Khalid, M., Walvekar, R., Mubarak, N. M., Dharaskar, S., Wong, W. Y., Gupta, T. C. S. M. (2019). Deep eutectic solvents for extraction-desulphurization: A review. Journal of Molecular Liquids, 275: 312-322. https://doi.org/10.1016/j.molliq.2018.11.051

Connan, J., Deschesne, O. (1992). Archaeological bitumen: identification, origins and uses of an ancient near eastern material. Materials Research Society Proceedings, 267: 683. https://doi.org/10.1557/PROC-267-683

Demirbas, M. Faith. (2009). Biorefineries for biofuel upgrading: A critical review. Applied Energy, 86: S151-S161. https://doi.org/10.1016/j.apenergy.2009.04.043

Dos Santos, R. G., Alencar, A. C. (2019). Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review. International Journal of Hydrogen Energy, en prensa, prueba corregida: https://doi.org/10.1016/j.ijhydene.2019.07.133

Fahim, M. A., Alsahhaf, T. A., Elkilani, A. (2010). Fundamentals of petroleum refining. Amsterdam: Elsevier.

Garlapati, V. K., Tewari, S., Ganguly, R. (2019). Life cycle assessment of first-, second-generation, and microalgae biofuels. Advances in feedstock conversion technologies for alternative fuels and bioproducts, New Technologies, Challenges and Opportunities Woodhead Publishing Series in Energy: 355-371. https://doi.org/10.1016/B978-0-12-817937-6.00019-9

Grazia, L. (2018). State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. Journal of CO2 Utilization, 27: 326-354. https://doi.org/10.1016/j.jcou.2018.08.005

Guo, B., Wang, R., Li, Y. (2011). Gasoline alkylation desulfurization over Amberlyst 35 resin: Influence of methanol and apparent reaction kinetics. Fuel, 90(2): 713-718. https://doi.org/10.1016/j.fuel.2010.10.010

Guo, B., Li, Y. (2012). Analysis and simulation of reactive distillation for gasoline alkylation desulfurization. Chemical Engineering Science, 72: 115-125. https://doi.org/10.1016/j.ces.2012.01.016

Hossain, M. N., Park, H. C., Choi, H. S. (2019). A comprehensive review on catalytic oxidative desulfurization of liquid fuel oil. Catalysts, 9(3): 229. https://doi.org/10.3390/catal9030229

Hunt, J. M. (1979). Petroleum geochemistry and geology. United States: W. H. Freeman and Company, San Francisco.

International Energy Agency (IEA). (2019). World energy outlook 2019. París: OECD/IEA.

Organisation Internationale des Constructeurs d’Automobiles (OICA). (2020). http://www.oica.net/

Kotilainen, K., Aalto, P., Valta, J., Rautiainen, A., Kojo, M., Sovacool, B. K. (2019). From path dependence to policy mixes for Nordic electric mobility: Lessons for accelerating future transport transitions. Policy Sciences, 52: 573-600. https://doi.org/10.1007/s11077-019-09361-3

Królikowski, M. (2019). Liquid–liquid extraction of sulfur compounds from heptane with tricyanomethanide based ionic liquids. The Journal of Chemical Thermodynamics, 131: 460-470. https://doi.org/10.1016/j.jct.2018.10.009

Lateef, S. A., Ajumobi, O. O., Onaizi, S. A. (2019). Enzymatic desulfurization of crude oil and its fractions: A mini review on the recent progresses and challenges. Arabian Journal for Science and Engineering, 44: 5181-5193. https://doi.org/10.1007/s13369-019-03800-2

Leea, K. X., Valla, J. A. (2019). Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: a comprehensive review. Reaction Chemistry and Engineering, 4: 1357-1386. https://doi.org/10.1039/C9RE00036D

Li, J., Wang, L., Cao, Y., Zhang, C., He, P., Li, H. (2018). Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels. Chinese Journal of Chemical Engineering, 26(11): 2266-2279. https://doi.org/10.1016/j.cjche.2018.07.008

Lippmann, M., Leikauf, G. D. (eds). (2020). Environmental toxicants: Human exposures and their health effects, 4a ed. United States: John Wiley & Sons.

Meyers, Robert A. (1996). Handbook of petroleum refining processes. United States: McGraw-Hill.

Orr, W. L., Damsté, J. S. S. (1990). Geochemistry of sulfur in petroleum systems. ACS Symposium Series, 429: 2-29. https://doi.org/10.1021/bk-1990-0429.ch001

Pan, X. (2011). Sulfur oxides: Sources, exposures and health effects. Encyclopedia of Environmental Health, 290-296. https://doi.org/10.1016/B978-0-444-52272-6.00069-6

Rajendran, A., Cui, T.-Y., Fan, H.-X, Yang, Z.-F., Feng, J., Li, W.-Y. (2020). A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. Journal of Materials Chemistry-A, 8: 2246-2285. https://doi.org/10.1039/C9TA12555H

Raseev, S., Dekker, M. (2003). Thermal and catalytic processes in petroleum refining. Boca Raton, Florida: CRC Press, Primera edición. https://doi.org/10.1201/9780203912300

Rietmann, N., Lieven, T. (2019). How policy measures succeeded to promote electric mobility – Worldwide review and outlook. Journal of Cleaner Production, 206: 66-75. https://doi.org/10.1016/j.jclepro.2018.09.121

Sadegh-Vaziri, R., Bäbler, U. (2019). Providing sulfur free syngas to fuel cell system. Energy Procedia, 159: 448-453. https://doi.org/10.1016/j.egypro.2018.12.041

Saleh, T. A. (2019). Nanocomposites for the desulfurization of fuels. IGI Global. https://doi.org/10.4018/978-1-7998-2146-5

Saleh, T. A. (2020). Characterization, determination and elimination technologies for sulfur from petroleum: Toward cleaner fuel and a safe environment. Trends in Environmental Analytical Chemistry. 25: e00080. https://doi.org/10.1016/j.teac.2020.e00080

Sharifzadeh, M., Sadeqzadeh, M., Guo M., Borhania, T. N., Konda, N. V. S. N. M., Garcia, M. C., Wang, L., Hallette, J., Shah, N. (2019). The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Progress in Energy and Combustion Science, 71: 1-80. https://doi.org/10.1016/j.pecs.2018.10.006

Sharmil,V. G., Banu, J. R., Kim S.-H., Kumard, G. (2020). A review on evaluation of applied pretreatment methods of wastewater towards sustainable H2 generation: Energy efficiency analysis. International Journal of Hydrogen Energy, 45(15): 8329-8345. https://doi.org/10.1016/j.ijhydene.2020.01.081

Sikarwar, P., Gosu, V., Subbaramaiah, V. (2018). An overview of conventional and alternative technologies for the production of ultra-low-sulfur fuels. Reviews in Chemical Engineering. 35(6): 669-705. https://doi.org/10.1515/revce-2017-0082

Srivastava, V. C. (2012). An evaluation of desulfurization technologies for sulfur removal from liquid fuels. Royal Society of Chemistry Adv, 2: 759-783. https://doi.org/10.1039/C1RA00309G

Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 86(1-4): 211-263. https://doi.org/10.1016/S0920-5861(03)00412-7

Stanislaus, A., Marafi, A., Rana, M. S. (2010). Recent advances in the science and technology of ultra-low sulfur diesel (ULSD) production. Catalysis Today, 153(1-2): 1-68. https://doi.org/10.1016/j.cattod.2010.05.011

Stepanenko, D., Kneba, Z. (2019). DME as alternative fuel for compression ignition engines – A review. Combustion Engines, 177(2): 172-179. https://doi.org/10.19206/CE-2019-230

Tissot, B. P., Welte, D. H. (1984). Petroleum formation and occurrence, 2a ed. Berlín: Springer-Verlag. https://doi.org/10.1007/978-3-642-96446-6

Yang, X., Su, X., Chen, D., Zhang, T., Huang, Y. (2020). Direct conversion of syngas to aromatics: A review of recent studies. Chinese Journal of Catalysis, 41(4): 561-573. https://doi.org/10.1016/S1872-2067(19)63346-2

Yue, M., Jemei, S., Gouriveau, R., Zerhouni, N. (2019). Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies. International Journal of Hydrogen Energy, 44(13): 6844-6861. https://doi.org/10.1016/j.ijhydene.2019.01.190