Manufacturing of nanoestructures by laser ablation and its use in SERS with low detection threshold: the case of Ag-NPs

Main Article Content

V. Alonso Camarena-Chávez
H. Mauricio Reynoso De La Cruz
J. Ulises Álvarez-Martínez
Alejandro Martínez-Bórquez
G. Gutiérrez-Juárez
G. Ramos-Ortiz
R. Castro-Beltrán

Abstract

In this work we present the manufacture of silver nanoparticles (Ag-NPs) by means of laser ablation (AL) in aqueous medium, and its application as elements of Raman signal enhancement through SERS type processes. This methodology allows to obtain stable suspensions of NPs free of the use of chemical processes, with dispersions of relatively small sizes and of easy processing for the implementation of SERS substrates of silica. Through the use of aliquots at different concentrations of Rhodamine 6G (R6G), it is demonstrated that with these Ag-NPs, Raman signal detection thresholds are reached in concentrations of the order of nM. The study of the distribution of Ag-NPs on a silica substrate was carried out by atomic force microscopy (AFM). In turn, some simulation results of the magnitude of the fields are generating hot spot in specific regions of the Ag-NPs taking into account the morphology of some of the agglomerates identified in the electron scanning microscopy (SEM) in the SERS substrates. In comparison to some previous reports, the present work demonstrates low detection thresholds and simple implementation in SERS substrates.

Article Details

How to Cite
Camarena-Chávez, V. A., Reynoso De La Cruz, H. M., Álvarez-Martínez, J. U., Martínez-Bórquez, A., Gutiérrez-Juárez, G., Ramos-Ortiz, G., & Castro-Beltrán, R. (2019). Manufacturing of nanoestructures by laser ablation and its use in SERS with low detection threshold: the case of Ag-NPs. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 13(24), 1e-12e. https://doi.org/10.22201/ceiich.24485691e.2020.24.69619
Section
Research articles

References

Castro-Beltrán, Rigoberto; Vinh M. Diep, Soheil Soltani, Eda Gungor, Andrea M. Armani. (2017). Plasmonically enhanced kerr frequency combs. ACS Photonics, 4: 2828. http://dx.doi.org/10.1021/acsphotonics.7b00808

D’Andrea, C.; F. Neri, P. M. Ossi, N. Santo, S. Trusso. (2009). The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering. Nanotechnology, 20: 245606. http://dx.doi.org/10.1088/0957-4484/20/24/245606

Dedic, Chloe E.; Terrence R. Mayer y James B. Michael (2017). Single-shot ultrafast coherent anti-stokes Raman scattering of vibrational/rotational nonequilibrium. Optica, 4: 563-570. http://dx.doi.org/10.1364/OPTICA.4.000563

Fleischmann, M.; P. J. Hendra y A. J. McQuillan. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 26 (2) 163-166. http://dx.doi.org/10.1016/0009-2614(74)85388-1

He, X. N.; Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang y Y. F. Lu. (2012). Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology, 23: 205702. http://dx.doi.org/10.1088/0957-4484/23/20/205702

Kumar Sur, Ujjal. (2017). Surface-enhanced Raman scattering, En Khan Maaz (ed.), Raman spectroscopy and applications, cap. 14. https://www.intechopen.com/books/raman-spectroscopy-and-applications/surface-enhanced-raman-scattering. http://dx.doi.org/10.5772/66084

Nebogatikov, M. S.; V. Ya. Shur, A. E. Tyurnina, R. V. Kozinr, V. Yu. Sukhanova, E. A. Mingaliev, D. V. Zorikhin. (2015). Surface-enhanced raman scattering using silver nanoparticles produced by laser ablation in liquid. Ferroelectrics, 477: 54-62. https://doi.org/10.1080/00150193.2015.999629

Rosales, J. E. Alba; G. Ramos-Ortiz, G. Martínez-Ponce, R. Castro-Beltrán, L. Polo-Parada y G. Gutiérrez-Juáreza, (2018). Dual photoacoustic monitoring in laser ablation synthesis of silver nanoparticles to find in situ their fluence threshold formation. Results in Physics, 11: 350-357. http://dx.doi.org/10.1016/j.rinp.2018.08.039

Shi Ce, Soheil Soltani, Andrea M. Armani. (2013). Gold nanorod plasmonic upconversion microlaser. Nano Lett., 13: 5827. http://dx.doi.org/10.1021/nl4024885

Škantárová, Lenka; Andrej Orinák, Renáta Orináková, Monika Jerigová, Monika Stupavská y Dusan Velicd. (2013). Functional silver nanostructured surfaces applied in SERS and SIMS. Surf. Interface Anal., 45: 1266. http://dx.doi.org/10.1002/sia.5267

Yang, Jing; Fanghui Ren, Xinyuan Chong, Donglei Fan, Swapnajit Chakravarty, Zheng Wang, Ray T. Chen y Alan X. Wang. (2014). Guided-mode resonance grating with self-assembled silver nanoparticles for surface-enhanced raman scattering spectroscopy. Photonics, 14: 380-389. http://dx.doi.org/10.3390/photonics1040380

Yingcheng, Pan; Xiaoyu Guo, Jinglu Zhu, Xuan Wang, Han Zhang, Yan Kang, Ting Wu, Yiping Du. (2015). A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and its application to the trace determination of pesticides. Microchimica Acta, 182, 1775. http://dx.doi.org/10.1007/s00604-015-1514-8