Transesterificación de aceite de canola con Sr/CaO mediante el método Box-Behnken

Contenido principal del artículo

David Marín-Lugo
Rodrigo Barrera-Gutiérrez
https://orcid.org/0009-0005-5592-7975
Gabriela Alejandra Vázquez-Rodríguez
https://orcid.org/0000-0001-8351-8451
Gerardo Chávez-Esquivel
Jesús Andrés Tavizón-Pozos

Resumen

Dada la necesidad de nuevos materiales catalíticos para la transesterificación de aceites para la generación de biodiesel, el objetivo de este trabajo fue optimizar esta reacción usando catalizadores de Sr/CaO obtenidos a partir de cascarón de huevo mediante el estudio del efecto de la cantidad de estroncio, temperatura de calcinación y el método Box-Behnken. Se prepararon catalizadores de Sr/CaO con 3, 6 y 9 %p/p de Sr por calcinación a 500, 650 y 800 °C usando el método de impregnación húmeda de Sr(NO3)2 disuelto en metanol. Se encontró que, al aumentar la cantidad de Sr y la temperatura de calcinación de todas las series, también lo hace el rendimiento de biodiesel. Esto se debe a que con alta concentración de Sr y temperatura de calcinación se generan más sitios activos superficiales. Asimismo, se observó que se formarían especies SrCO3 las cuales limitarían el rendimiento del catalizador. Considerando los resultados, el catalizador con 9 %p/p de Sr calcinado a 800 °C fue el más activo y usado en la optimización. Para esto se utilizó el método Box-Behnken tomando como factores la relación molar metanol/aceite, la temperatura y el tiempo usando 8 %p/p de catalizador respecto al aceite. Se encontró que el rendimiento óptimo fue del 90.81% con una relación metanol/aceite = 10, 68.58 °C por 2 h.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Marín-Lugo, D., Barrera-Gutiérrez, R., Vázquez-Rodríguez, G. A., Chávez-Esquivel, G., & Tavizón-Pozos, J. A. (2025). Transesterificación de aceite de canola con Sr/CaO mediante el método Box-Behnken. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 18(35), e69843. https://doi.org/10.22201/ceiich.24485691e.2025.35.69843
Sección
Artículos de investigación

Citas

Aleman-Ramirez, J. L., Patrick U. O., Torres-Arellano S., Paraguay-Delgado F., Mejía-López M., Moreira J. y Sebastian J. P. (2022). Development of reusable composite eggshell-moringa leaf catalyst for biodiesel production. Fuel, 324: 124601. https://doi.org/10.1016/j.fuel.2022.124601. DOI: https://doi.org/10.1016/j.fuel.2022.124601

Ali, S. D., Javed, I. N., Ran,a U. A., Nazar, M. F., Ahmed, W., Junaid, A., Pasha, M., Nazir, R. y Nazir R. (2017). Novel SrO-CaO mixed metal oxides catalyst for ultrasonic-assisted transesterification of Jatropha oil into biodiesel. Australian Journal of Chemistry, 70(3): 258-64. https://doi.org/10.1071/CH16236. DOI: https://doi.org/10.1071/CH16236

Ashine F., Kiflie Z., Prabhu S. V., Tizazu B. Z., Varadharajan V., Rajasimman M., Joo S. W., Vasseghian Y. y Jayakumar M. (2023). Biodiesel production from Argemone mexicana oil using chicken eggshell derived CaO catalyst. Fuel, 332: 126166. https://doi.org/10.1016/j.fuel.2022.126166. DOI: https://doi.org/10.1016/j.fuel.2022.126166

Chouhan, A. P. S. y Sarma A. K. (2011). Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renewable and Sustainable Energy Reviews, 15(9): 4378-99. https://doi.org/10.1016/j.rser.2011.07.112. DOI: https://doi.org/10.1016/j.rser.2011.07.112

Culas, S., Surendran, A., Jadu Samuel, J. (2013). Kinetic studies of the non-isothermal decomposition of strontium nitrate. Asian Journal of Chemistry, 25(7): 3855. https://doi.org/10.14233/ajchem.2013.13820. DOI: https://doi.org/10.14233/ajchem.2013.13820

Dianursanti, Delaamira M., Bismo S. y Muharam Y. (2017). Effect of reaction temperature on biodiesel production from chlorella vulgaris using CuO/zeolite as heterogeneous catalyst. IOP Conference Series: Earth and Environmental Science, 55(1): 12033. https://doi.org/10.1088/1755-1315/55/1/012033. DOI: https://doi.org/10.1088/1755-1315/55/1/012033

Glisic, S. B., Pajnik, J. M. y Orlović, A. M. (2016). Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production. Applied Energy, 170: 176-85. https://doi.org/10.1016/j.apenergy.2016.02.102. DOI: https://doi.org/10.1016/j.apenergy.2016.02.102

Hernández-Martínez, M. A., Rodriguez, J. A., Chavez-Esquivel, G., Ángeles-Beltrán, D. y Tavizón-Pozos, J. A. (2023). Canola oil transesterification for biodiesel production using potassium and strontium supported on calcium oxide catalysts synthesized from oyster shell residues. Next Materials, 1(4): 100033. https://doi.org/10.1016/j.nxmate.2023.100033. DOI: https://doi.org/10.1016/j.nxmate.2023.100033

Khan, M. R. y Singh, H. N. (2024). Clean biodiesel production approach using waste swan eggshell derived heterogeneous catalyst: an optimization study employing box-behnken-response surface methodology. Industrial Crops and Products, 220: 119181. https://doi.org/10.1016/j.indcrop.2024.119181. DOI: https://doi.org/10.1016/j.indcrop.2024.119181

Khatibi, M., Khorasheh, F. y Larimi, A. (2021). Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell. Renewable Energy, 163: 1626-36. https://doi.org/10.1016/j.renene.2020.10.039. DOI: https://doi.org/10.1016/j.renene.2020.10.039

Kibar, M. E., Hilal, L., Çapa, B. T., Bahçıvanlar, B. y Abdeljelil, B. B. (2023). Assessment of homogeneous and heterogeneous catalysts in transesterification reaction: a mini review. ChemBioEng Reviews, 10(4): 412-22. https://doi.org/10.1002/cben.202200021. DOI: https://doi.org/10.1002/cben.202200021

Kouzu, M., Hidaka, J., Wakabayashi, K. y Tsunomori, M. (2010). Solid base catalysis of calcium glyceroxide for a reaction to convert vegetable oil into its methyl esters. Applied Catalysis A: General, 390(1): 11-18. https://doi.org/10.1016/j.apcata.2010.09.029. DOI: https://doi.org/10.1016/j.apcata.2010.09.029

Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S. y Hidaka, J. (2008). Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 87(12): 2798-2806. https://doi.org/10.1016/j.fuel.2007.10.019. DOI: https://doi.org/10.1016/j.fuel.2007.10.019

Kumar, J. D., Bhattacharjee, S., Roy, S., Dostál, P. y Bej, B. (2022). The optimization of biodiesel production from waste cooking oil catalyzed by ostrich-eggshell derived CaO through various machine learning approaches. Cleaner Energy Systems, 3: 100033. https://doi.org/10.1016/j.cles.2022.100033. DOI: https://doi.org/10.1016/j.cles.2022.100033

Lee, S. B., Han, K. H., Lee, J. D. y Hong, I. K. (2010). Optimum process and energy density analysis of canola oil biodiesel synthesis. Journal of Industrial and Engineering Chemistry, 16(6): 1006-10. https://doi.org/10.1016/j.jiec.2010.09.015. DOI: https://doi.org/10.1016/j.jiec.2010.09.015

Li, H., Niu, S., Lu, C. y Li, J. (2016). Calcium oxide functionalized with strontium as heterogeneous transesterification catalyst for biodiesel production. Fuel, 176: 63-71. https://doi.org/10.1016/j.fuel.2016.02.067. DOI: https://doi.org/10.1016/j.fuel.2016.02.067

Liu, X., He, H., Wang, Y., Zhu, S. y Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87(2): 216-21. https://doi.org/10.1016/j.fuel.2007.04.013. DOI: https://doi.org/10.1016/j.fuel.2007.04.013

Mat, A., Syahirah, N., Khoo, K. S., Chew, K. W., Show, P. L., Chen, W. H. y Nguyen, H.P. (2020). Sustainability of the four generations of biofuels – A review. International Journal of Energy Research, 44(12): 9266-82. https://doi.org/10.1002/er.5557. DOI: https://doi.org/10.1002/er.5557

Mofijur, M., Siddiki, S. Y. A., Shuvho, M. B. A., Djavanroodi, F., Rizwanul Fattah, I. M., Ong, H. C., Chowdhury, M. A. y Mahlia, T. M. I. (2021). Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources – A mini-review. Chemosphere – 270: 128642. https://doi.org/10.1016/j.chemosphere.2020.128642. DOI: https://doi.org/10.1016/j.chemosphere.2020.128642

Otera J. (1993). Transesterification. Chemical Reviews, 93(4): 1449-70. https://doi.org/10.1021/cr00020a004. DOI: https://doi.org/10.1021/cr00020a004

Olvera-Ureña, E., Rodriguez, J. A., Díaz de León, J. N. y Tavizón-Pozos, J. A. (2025). Dispersion of Sr and K species supported on CaO eggshell-based catalysts for biodiesel production. Topics in Catalysis, 1-14. https://doi.org/10.1007/s11244-025-02050-x. DOI: https://doi.org/10.1007/s11244-025-02050-x

Pavlović, S., Šelo, G., Marinković, D., Planinić, M., Tišma, M. y Stanković, M. (2021). Transesterification of sunflower oil over waste chicken eggshell-based catalyst in a microreactor: an optimization study. Micromachines. https://doi.org/10.3390/mi12020120. DOI: https://doi.org/10.3390/mi12020120

Prokaewa, A., Smith, S. M., Luengnaruemitchai, A., Kandiah, M. y Boonyuen, S. (2022). Biodiesel production from waste cooking oil using a new heterogeneous catalyst SrO doped CaO nanoparticles. Journal of Metals, Materials and Minerals, 32(1): 79-85. https://doi.org/10.55713/jmmm.v32i1.1149. DOI: https://doi.org/10.55713/jmmm.v32i1.1149

Ptáček, P., Bartoníčková, E., Švec, J., Opravil, T., Šoukal, F. y Frajkorová, F. (2015). The kinetics and mechanism of thermal decomposition of SrCO3 polymorphs. Ceramics International, 41(1, Part A): 115-26. https://doi.org/10.1016/j.ceramint.2014.08.043. DOI: https://doi.org/10.1016/j.ceramint.2014.08.043

Ramírez-Paredes, E. A., Rodriguez, J. A., Chavez-Esquivel, G. y Tavizón-Pozos, J. A. (2024). Effect of Sr concentration in SrK/CaO oyster shell derived catalysts for biodiesel production, International Journal of Chemical Reactor Engineering, 22(6): 689-700. https://doi.org/doi:10.1515/ijcre-2024-0021. DOI: https://doi.org/10.1515/ijcre-2024-0021

Rizwanul Fattah, I. M., Ong, H. C., Mahlia, T. M. I., Mofijur, M., Silitonga, A. S., Rahman, S. M. A. y Ahmad, A. (2020). State of the art of catalysts for biodiesel production. Frontiers in Energy Research, 8: 101. https://www.frontiersin.org/articles/10.3389/fenrg.2020.00101. DOI: https://doi.org/10.3389/fenrg.2020.00101

Solomon, B. D. (2010). Biofuels and sustainability. Annals of the New York Academy of Sciences, 1185(1): 119-34. https://doi.org/10.1111/j.1749-6632.2009.05279.x. DOI: https://doi.org/10.1111/j.1749-6632.2009.05279.x

Tangy, A., Pulidindi, I. N., Dutta, A. y Borenstein, A. (2021). Strontium oxide nanoparticles for biodiesel production: fundamental insights and recent progress. Energy & Fuels, 35(1): 187-200. https://doi.org/10.1021/acs.energyfuels.0c03815. DOI: https://doi.org/10.1021/acs.energyfuels.0c03815

Tavizón-Pozos, J. A. y Cruz-Aburto, Z. G. (2024). A review of the use of SrO in catalysts for biodiesel production. Biofuels, Bioproducts and Biorefining, 18(2): 652-68. https://doi.org/10.1002/bbb.2562. DOI: https://doi.org/10.1002/bbb.2562

Tavizón-Pozos, J. A., Chavez-Esquivel, G., Suárez-Toriello, V. A., Santolalla-Vargas, C. E., Luévano-Rivas, O. A., Valdés-Martínez, O. U., Talavera-López, A. y Rodriguez, J. A. (2021). State of art of alkaline earth metal oxides catalysts used in the transesterification of oils for biodiesel production. Energies. https://doi.org/10.3390/en14041031. DOI: https://doi.org/10.3390/en14041031

Unruean, P., Nomura, K., Kitiyanan, B., (2022). High conversion of CaO-catalyzed transesterification of vegetable oils with ethanol. Journal of Oleo Science, 17(7) 1051-1062. https://doi.org/10.5650/jos.ess21374. DOI: https://doi.org/10.5650/jos.ess21374

Verma, P. y Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62: 1063-71. https://doi.org/10.1016/j.rser.2016.04.054. DOI: https://doi.org/10.1016/j.rser.2016.04.054