Transesterificación de aceite de canola con Sr/CaO mediante el método Box-Behnken
Contenido principal del artículo
Resumen
Dada la necesidad de nuevos materiales catalíticos para la transesterificación de aceites para la generación de biodiesel, el objetivo de este trabajo fue optimizar esta reacción usando catalizadores de Sr/CaO obtenidos a partir de cascarón de huevo mediante el estudio del efecto de la cantidad de estroncio, temperatura de calcinación y el método Box-Behnken. Se prepararon catalizadores de Sr/CaO con 3, 6 y 9 %p/p de Sr por calcinación a 500, 650 y 800 °C usando el método de impregnación húmeda de Sr(NO3)2 disuelto en metanol. Se encontró que, al aumentar la cantidad de Sr y la temperatura de calcinación de todas las series, también lo hace el rendimiento de biodiesel. Esto se debe a que con alta concentración de Sr y temperatura de calcinación se generan más sitios activos superficiales. Asimismo, se observó que se formarían especies SrCO3 las cuales limitarían el rendimiento del catalizador. Considerando los resultados, el catalizador con 9 %p/p de Sr calcinado a 800 °C fue el más activo y usado en la optimización. Para esto se utilizó el método Box-Behnken tomando como factores la relación molar metanol/aceite, la temperatura y el tiempo usando 8 %p/p de catalizador respecto al aceite. Se encontró que el rendimiento óptimo fue del 90.81% con una relación metanol/aceite = 10, 68.58 °C por 2 h.
Descargas
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Aleman-Ramirez, J. L., Patrick U. O., Torres-Arellano S., Paraguay-Delgado F., Mejía-López M., Moreira J. y Sebastian J. P. (2022). Development of reusable composite eggshell-moringa leaf catalyst for biodiesel production. Fuel, 324: 124601. https://doi.org/10.1016/j.fuel.2022.124601. DOI: https://doi.org/10.1016/j.fuel.2022.124601
Ali, S. D., Javed, I. N., Ran,a U. A., Nazar, M. F., Ahmed, W., Junaid, A., Pasha, M., Nazir, R. y Nazir R. (2017). Novel SrO-CaO mixed metal oxides catalyst for ultrasonic-assisted transesterification of Jatropha oil into biodiesel. Australian Journal of Chemistry, 70(3): 258-64. https://doi.org/10.1071/CH16236. DOI: https://doi.org/10.1071/CH16236
Ashine F., Kiflie Z., Prabhu S. V., Tizazu B. Z., Varadharajan V., Rajasimman M., Joo S. W., Vasseghian Y. y Jayakumar M. (2023). Biodiesel production from Argemone mexicana oil using chicken eggshell derived CaO catalyst. Fuel, 332: 126166. https://doi.org/10.1016/j.fuel.2022.126166. DOI: https://doi.org/10.1016/j.fuel.2022.126166
Chouhan, A. P. S. y Sarma A. K. (2011). Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renewable and Sustainable Energy Reviews, 15(9): 4378-99. https://doi.org/10.1016/j.rser.2011.07.112. DOI: https://doi.org/10.1016/j.rser.2011.07.112
Culas, S., Surendran, A., Jadu Samuel, J. (2013). Kinetic studies of the non-isothermal decomposition of strontium nitrate. Asian Journal of Chemistry, 25(7): 3855. https://doi.org/10.14233/ajchem.2013.13820. DOI: https://doi.org/10.14233/ajchem.2013.13820
Dianursanti, Delaamira M., Bismo S. y Muharam Y. (2017). Effect of reaction temperature on biodiesel production from chlorella vulgaris using CuO/zeolite as heterogeneous catalyst. IOP Conference Series: Earth and Environmental Science, 55(1): 12033. https://doi.org/10.1088/1755-1315/55/1/012033. DOI: https://doi.org/10.1088/1755-1315/55/1/012033
Glisic, S. B., Pajnik, J. M. y Orlović, A. M. (2016). Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production. Applied Energy, 170: 176-85. https://doi.org/10.1016/j.apenergy.2016.02.102. DOI: https://doi.org/10.1016/j.apenergy.2016.02.102
Hernández-Martínez, M. A., Rodriguez, J. A., Chavez-Esquivel, G., Ángeles-Beltrán, D. y Tavizón-Pozos, J. A. (2023). Canola oil transesterification for biodiesel production using potassium and strontium supported on calcium oxide catalysts synthesized from oyster shell residues. Next Materials, 1(4): 100033. https://doi.org/10.1016/j.nxmate.2023.100033. DOI: https://doi.org/10.1016/j.nxmate.2023.100033
Khan, M. R. y Singh, H. N. (2024). Clean biodiesel production approach using waste swan eggshell derived heterogeneous catalyst: an optimization study employing box-behnken-response surface methodology. Industrial Crops and Products, 220: 119181. https://doi.org/10.1016/j.indcrop.2024.119181. DOI: https://doi.org/10.1016/j.indcrop.2024.119181
Khatibi, M., Khorasheh, F. y Larimi, A. (2021). Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell. Renewable Energy, 163: 1626-36. https://doi.org/10.1016/j.renene.2020.10.039. DOI: https://doi.org/10.1016/j.renene.2020.10.039
Kibar, M. E., Hilal, L., Çapa, B. T., Bahçıvanlar, B. y Abdeljelil, B. B. (2023). Assessment of homogeneous and heterogeneous catalysts in transesterification reaction: a mini review. ChemBioEng Reviews, 10(4): 412-22. https://doi.org/10.1002/cben.202200021. DOI: https://doi.org/10.1002/cben.202200021
Kouzu, M., Hidaka, J., Wakabayashi, K. y Tsunomori, M. (2010). Solid base catalysis of calcium glyceroxide for a reaction to convert vegetable oil into its methyl esters. Applied Catalysis A: General, 390(1): 11-18. https://doi.org/10.1016/j.apcata.2010.09.029. DOI: https://doi.org/10.1016/j.apcata.2010.09.029
Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S. y Hidaka, J. (2008). Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 87(12): 2798-2806. https://doi.org/10.1016/j.fuel.2007.10.019. DOI: https://doi.org/10.1016/j.fuel.2007.10.019
Kumar, J. D., Bhattacharjee, S., Roy, S., Dostál, P. y Bej, B. (2022). The optimization of biodiesel production from waste cooking oil catalyzed by ostrich-eggshell derived CaO through various machine learning approaches. Cleaner Energy Systems, 3: 100033. https://doi.org/10.1016/j.cles.2022.100033. DOI: https://doi.org/10.1016/j.cles.2022.100033
Lee, S. B., Han, K. H., Lee, J. D. y Hong, I. K. (2010). Optimum process and energy density analysis of canola oil biodiesel synthesis. Journal of Industrial and Engineering Chemistry, 16(6): 1006-10. https://doi.org/10.1016/j.jiec.2010.09.015. DOI: https://doi.org/10.1016/j.jiec.2010.09.015
Li, H., Niu, S., Lu, C. y Li, J. (2016). Calcium oxide functionalized with strontium as heterogeneous transesterification catalyst for biodiesel production. Fuel, 176: 63-71. https://doi.org/10.1016/j.fuel.2016.02.067. DOI: https://doi.org/10.1016/j.fuel.2016.02.067
Liu, X., He, H., Wang, Y., Zhu, S. y Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87(2): 216-21. https://doi.org/10.1016/j.fuel.2007.04.013. DOI: https://doi.org/10.1016/j.fuel.2007.04.013
Mat, A., Syahirah, N., Khoo, K. S., Chew, K. W., Show, P. L., Chen, W. H. y Nguyen, H.P. (2020). Sustainability of the four generations of biofuels – A review. International Journal of Energy Research, 44(12): 9266-82. https://doi.org/10.1002/er.5557. DOI: https://doi.org/10.1002/er.5557
Mofijur, M., Siddiki, S. Y. A., Shuvho, M. B. A., Djavanroodi, F., Rizwanul Fattah, I. M., Ong, H. C., Chowdhury, M. A. y Mahlia, T. M. I. (2021). Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources – A mini-review. Chemosphere – 270: 128642. https://doi.org/10.1016/j.chemosphere.2020.128642. DOI: https://doi.org/10.1016/j.chemosphere.2020.128642
Otera J. (1993). Transesterification. Chemical Reviews, 93(4): 1449-70. https://doi.org/10.1021/cr00020a004. DOI: https://doi.org/10.1021/cr00020a004
Olvera-Ureña, E., Rodriguez, J. A., Díaz de León, J. N. y Tavizón-Pozos, J. A. (2025). Dispersion of Sr and K species supported on CaO eggshell-based catalysts for biodiesel production. Topics in Catalysis, 1-14. https://doi.org/10.1007/s11244-025-02050-x. DOI: https://doi.org/10.1007/s11244-025-02050-x
Pavlović, S., Šelo, G., Marinković, D., Planinić, M., Tišma, M. y Stanković, M. (2021). Transesterification of sunflower oil over waste chicken eggshell-based catalyst in a microreactor: an optimization study. Micromachines. https://doi.org/10.3390/mi12020120. DOI: https://doi.org/10.3390/mi12020120
Prokaewa, A., Smith, S. M., Luengnaruemitchai, A., Kandiah, M. y Boonyuen, S. (2022). Biodiesel production from waste cooking oil using a new heterogeneous catalyst SrO doped CaO nanoparticles. Journal of Metals, Materials and Minerals, 32(1): 79-85. https://doi.org/10.55713/jmmm.v32i1.1149. DOI: https://doi.org/10.55713/jmmm.v32i1.1149
Ptáček, P., Bartoníčková, E., Švec, J., Opravil, T., Šoukal, F. y Frajkorová, F. (2015). The kinetics and mechanism of thermal decomposition of SrCO3 polymorphs. Ceramics International, 41(1, Part A): 115-26. https://doi.org/10.1016/j.ceramint.2014.08.043. DOI: https://doi.org/10.1016/j.ceramint.2014.08.043
Ramírez-Paredes, E. A., Rodriguez, J. A., Chavez-Esquivel, G. y Tavizón-Pozos, J. A. (2024). Effect of Sr concentration in SrK/CaO oyster shell derived catalysts for biodiesel production, International Journal of Chemical Reactor Engineering, 22(6): 689-700. https://doi.org/doi:10.1515/ijcre-2024-0021. DOI: https://doi.org/10.1515/ijcre-2024-0021
Rizwanul Fattah, I. M., Ong, H. C., Mahlia, T. M. I., Mofijur, M., Silitonga, A. S., Rahman, S. M. A. y Ahmad, A. (2020). State of the art of catalysts for biodiesel production. Frontiers in Energy Research, 8: 101. https://www.frontiersin.org/articles/10.3389/fenrg.2020.00101. DOI: https://doi.org/10.3389/fenrg.2020.00101
Solomon, B. D. (2010). Biofuels and sustainability. Annals of the New York Academy of Sciences, 1185(1): 119-34. https://doi.org/10.1111/j.1749-6632.2009.05279.x. DOI: https://doi.org/10.1111/j.1749-6632.2009.05279.x
Tangy, A., Pulidindi, I. N., Dutta, A. y Borenstein, A. (2021). Strontium oxide nanoparticles for biodiesel production: fundamental insights and recent progress. Energy & Fuels, 35(1): 187-200. https://doi.org/10.1021/acs.energyfuels.0c03815. DOI: https://doi.org/10.1021/acs.energyfuels.0c03815
Tavizón-Pozos, J. A. y Cruz-Aburto, Z. G. (2024). A review of the use of SrO in catalysts for biodiesel production. Biofuels, Bioproducts and Biorefining, 18(2): 652-68. https://doi.org/10.1002/bbb.2562. DOI: https://doi.org/10.1002/bbb.2562
Tavizón-Pozos, J. A., Chavez-Esquivel, G., Suárez-Toriello, V. A., Santolalla-Vargas, C. E., Luévano-Rivas, O. A., Valdés-Martínez, O. U., Talavera-López, A. y Rodriguez, J. A. (2021). State of art of alkaline earth metal oxides catalysts used in the transesterification of oils for biodiesel production. Energies. https://doi.org/10.3390/en14041031. DOI: https://doi.org/10.3390/en14041031
Unruean, P., Nomura, K., Kitiyanan, B., (2022). High conversion of CaO-catalyzed transesterification of vegetable oils with ethanol. Journal of Oleo Science, 17(7) 1051-1062. https://doi.org/10.5650/jos.ess21374. DOI: https://doi.org/10.5650/jos.ess21374
Verma, P. y Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62: 1063-71. https://doi.org/10.1016/j.rser.2016.04.054. DOI: https://doi.org/10.1016/j.rser.2016.04.054