Transesterification of canola oil with Sr/CaO using the Box-Behnken method Transesterification of canola oil with Sr/CaO using the Box-Behnken method

Main Article Content

David Marín-Lugo
Rodrigo Barrera-Gutiérrez
Gabriela Alejandra Vázquez-Rodríguez
https://orcid.org/0000-0001-8351-8451
Gerardo Chávez-Esquivel
Jesús Andrés Tavizón-Pozos

Abstract

This work aimed to optimize the transesterification of canola oil to generate biodiesel with Sr/CaO catalysts obtained from eggshells by studying the effect of the amount of strontium, calcination temperature, and the Box-Behnken method. Sr/CaO catalysts with 3, 6, and 9 wt% Sr calcined at 500, 650, and 800 °C were prepared by wet impregnation using Sr(NO3)2 dissolved in methanol. As the amount of Sr and the calcination temperature of all series increases, so does the biodiesel yield. This is because more superficial active sites are generated with high Sr concentration and calcination temperature. Likewise, it was observed that SrCO3 species are formed, which would limit the catalyst performance. Based on the results, the catalyst with 9 wt% Sr calcined at 800 °C was the most active and used in the optimization. To achieve this, Box-Behnken method was used with the methanol/oil molar ratio, temperature, and time were used as factors using 8 wt% catalyst to oil. The optimum yield was 90.81 % at a methanol/oil molar ratio=10, 68.58 °C for 2 h.

Downloads

Download data is not yet available.

Article Details

How to Cite
Marín-Lugo, D., Barrera-Gutiérrez, R., Vázquez-Rodríguez, G. A., Chávez-Esquivel, G., & Tavizón-Pozos, J. A. (2025). Transesterification of canola oil with Sr/CaO using the Box-Behnken method: Transesterification of canola oil with Sr/CaO using the Box-Behnken method. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 18(35), e69843. https://doi.org/10.22201/ceiich.24485691e.2025.35.69843
Section
Research articles

References

Aleman-Ramirez, J. L., Patrick U. O., Torres-Arellano S., Paraguay-Delgado F., Mejía-López M., Moreira J. y Sebastian J. P. (2022). Development of reusable composite eggshell-moringa leaf catalyst for biodiesel production. Fuel, 324: 124601. https://doi.org/10.1016/j.fuel.2022.124601.

Ali, S. D., Javed, I. N., Ran,a U. A., Nazar, M. F., Ahmed, W., Junaid, A., Pasha, M., Nazir, R. y Nazir R. (2017). Novel SrO-CaO mixed metal oxides catalyst for ultrasonic-assisted transesterification of Jatropha oil into biodiesel. Australian Journal of Chemistry, 70(3): 258-64. https://doi.org/10.1071/CH16236.

Ashine F., Kiflie Z., Prabhu S. V., Tizazu B. Z., Varadharajan V., Rajasimman M., Joo S. W., Vasseghian Y. y Jayakumar M. (2023). Biodiesel production from Argemone mexicana oil using chicken eggshell derived CaO catalyst. Fuel, 332: 126166. https://doi.org/10.1016/j.fuel.2022.126166.

Chouhan, A. P. S. y Sarma A. K. (2011). Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renewable and Sustainable Energy Reviews, 15(9): 4378-99. https://doi.org/10.1016/j.rser.2011.07.112.

Culas, S., Surendran, A., Jadu Samuel, J. (2013). Kinetic studies of the non-isothermal decomposition of strontium nitrate. Asian Journal of Chemistry, 25(7): 3855. https://doi.org/10.14233/ajchem.2013.13820.

Dianursanti, Delaamira M., Bismo S. y Muharam Y. (2017). Effect of reaction temperature on biodiesel production from chlorella vulgaris using CuO/zeolite as heterogeneous catalyst. IOP Conference Series: Earth and Environmental Science, 55(1): 12033. https://doi.org/10.1088/1755-1315/55/1/012033.

Glisic, S. B., Pajnik, J. M. y Orlović, A. M. (2016). Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production. Applied Energy, 170: 176-85. https://doi.org/10.1016/j.apenergy.2016.02.102.

Hernández-Martínez, M. A., Rodriguez, J. A., Chavez-Esquivel, G., Ángeles-Beltrán, D. y Tavizón-Pozos, J. A. (2023). Canola oil transesterification for biodiesel production using potassium and strontium supported on calcium oxide catalysts synthesized from oyster shell residues. Next Materials, 1(4): 100033. https://doi.org/10.1016/j.nxmate.2023.100033.

Khan, M. R. y Singh, H. N. (2024). Clean biodiesel production approach using waste swan eggshell derived heterogeneous catalyst: an optimization study employing box-behnken-response surface methodology. Industrial Crops and Products, 220: 119181. https://doi.org/10.1016/j.indcrop.2024.119181.

Khatibi, M., Khorasheh, F. y Larimi, A. (2021). Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell. Renewable Energy, 163: 1626-36. https://doi.org/10.1016/j.renene.2020.10.039.

Kibar, M. E., Hilal, L., Çapa, B. T., Bahçıvanlar, B. y Abdeljelil, B. B. (2023). Assessment of homogeneous and heterogeneous catalysts in transesterification reaction: a mini review. ChemBioEng Reviews, 10(4): 412-22. https://doi.org/10.1002/cben.202200021.

Kouzu, M., Hidaka, J., Wakabayashi, K. y Tsunomori, M. (2010). Solid base catalysis of calcium glyceroxide for a reaction to convert vegetable oil into its methyl esters. Applied Catalysis A: General, 390(1): 11-18. https://doi.org/10.1016/j.apcata.2010.09.029.

Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S. y Hidaka, J. (2008). Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 87(12): 2798-2806. https://doi.org/10.1016/j.fuel.2007.10.019.

Kumar, J. D., Bhattacharjee, S., Roy, S., Dostál, P. y Bej, B. (2022). The optimization of biodiesel production from waste cooking oil catalyzed by ostrich-eggshell derived CaO through various machine learning approaches. Cleaner Energy Systems, 3: 100033. https://doi.org/10.1016/j.cles.2022.100033.

Lee, S. B., Han, K. H., Lee, J. D. y Hong, I. K. (2010). Optimum process and energy density analysis of canola oil biodiesel synthesis. Journal of Industrial and Engineering Chemistry, 16(6): 1006-10. https://doi.org/10.1016/j.jiec.2010.09.015.

Li, H., Niu, S., Lu, C. y Li, J. (2016). Calcium oxide functionalized with strontium as heterogeneous transesterification catalyst for biodiesel production. Fuel, 176: 63-71. https://doi.org/10.1016/j.fuel.2016.02.067.

Liu, X., He, H., Wang, Y., Zhu, S. y Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87(2): 216-21. https://doi.org/10.1016/j.fuel.2007.04.013.

Mat, A., Syahirah, N., Khoo, K. S., Chew, K. W., Show, P. L., Chen, W. H. y Nguyen, H.P. (2020). Sustainability of the four generations of biofuels – A review. International Journal of Energy Research, 44(12): 9266-82. https://doi.org/10.1002/er.5557.

Mofijur, M., Siddiki, S. Y. A., Shuvho, M. B. A., Djavanroodi, F., Rizwanul Fattah, I. M., Ong, H. C., Chowdhury, M. A. y Mahlia, T. M. I. (2021). Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources – A mini-review. Chemosphere – 270: 128642. https://doi.org/10.1016/j.chemosphere.2020.128642.

Otera J. (1993). Transesterification. Chemical Reviews, 93(4): 1449-70. https://doi.org/10.1021/cr00020a004.

Olvera-Ureña, E., Rodriguez, J. A., Díaz de León, J. N. y Tavizón-Pozos, J. A. (2025). Dispersion of Sr and K species supported on CaO eggshell-based catalysts for biodiesel production. Topics in Catalysis, 1-14. https://doi.org/10.1007/s11244-025-02050-x.

Pavlović, S., Šelo, G., Marinković, D., Planinić, M., Tišma, M. y Stanković, M. (2021). Transesterification of sunflower oil over waste chicken eggshell-based catalyst in a microreactor: an optimization study. Micromachines. https://doi.org/10.3390/mi12020120.

Prokaewa, A., Smith, S. M., Luengnaruemitchai, A., Kandiah, M. y Boonyuen, S. (2022). Biodiesel production from waste cooking oil using a new heterogeneous catalyst SrO doped CaO nanoparticles. Journal of Metals, Materials and Minerals, 32(1): 79-85. https://doi.org/10.55713/jmmm.v32i1.1149.

Ptáček, P., Bartoníčková, E., Švec, J., Opravil, T., Šoukal, F. y Frajkorová, F. (2015). The kinetics and mechanism of thermal decomposition of SrCO3 polymorphs. Ceramics International, 41(1, Part A): 115-26. https://doi.org/10.1016/j.ceramint.2014.08.043.

Ramírez-Paredes, E. A., Rodriguez, J. A., Chavez-Esquivel, G. y Tavizón-Pozos, J. A. (2024). Effect of Sr concentration in SrK/CaO oyster shell derived catalysts for biodiesel production, International Journal of Chemical Reactor Engineering, 22(6): 689-700. https://doi.org/doi:10.1515/ijcre-2024-0021.

Rizwanul Fattah, I. M., Ong, H. C., Mahlia, T. M. I., Mofijur, M., Silitonga, A. S., Rahman, S. M. A. y Ahmad, A. (2020). State of the art of catalysts for biodiesel production. Frontiers in Energy Research, 8: 101. https://www.frontiersin.org/articles/10.3389/fenrg.2020.00101.

Solomon, B. D. (2010). Biofuels and sustainability. Annals of the New York Academy of Sciences, 1185(1): 119-34. https://doi.org/10.1111/j.1749-6632.2009.05279.x.

Tangy, A., Pulidindi, I. N., Dutta, A. y Borenstein, A. (2021). Strontium oxide nanoparticles for biodiesel production: fundamental insights and recent progress. Energy & Fuels, 35(1): 187-200. https://doi.org/10.1021/acs.energyfuels.0c03815.

Tavizón-Pozos, J. A. y Cruz-Aburto, Z. G. (2024). A review of the use of SrO in catalysts for biodiesel production. Biofuels, Bioproducts and Biorefining, 18(2): 652-68. https://doi.org/10.1002/bbb.2562.

Tavizón-Pozos, J. A., Chavez-Esquivel, G., Suárez-Toriello, V. A., Santolalla-Vargas, C. E., Luévano-Rivas, O. A., Valdés-Martínez, O. U., Talavera-López, A. y Rodriguez, J. A. (2021). State of art of alkaline earth metal oxides catalysts used in the transesterification of oils for biodiesel production. Energies. https://doi.org/10.3390/en14041031.

Unruean, P., Nomura, K., Kitiyanan, B., (2022). High conversion of CaO-catalyzed transesterification of vegetable oils with ethanol. Journal of Oleo Science, 17(7) 1051-1062. https://doi.org/10.5650/jos.ess21374.

Verma, P. y Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62: 1063-71. https://doi.org/10.1016/j.rser.2016.04.054.