Usos de las nanopartículas de plata (AgNPs) en odontología
Conteúdo do artigo principal
Resumo
Las AgNPs se están utilizando ampliamente debido a sus excelentes propiedades antimicrobianas que les permiten ser incorporadas en diversas áreas de la odontología, como materiales dentales, ortodoncia, endodoncia, periodoncia y prostodoncia, entre otras. El objetivo de este trabajo fue revisar el uso de las AgNPs en las diferentes áreas de la odontología y las innovaciones tecnológicas asociadas. Se realizaron búsquedas sistemáticas en las bases de datos EBSCOhost y PubMed, con las palabras clave: “AgNPs” o “silver nanoparticles”, “dentistry” o “dentist” o “dental”, “materials” en un periodo que va del 2012 al 2023, en idioma inglés. Se encontraron un total de 261 artículos, se eliminaron los artículos repetidos, artículos de revisión, o artículos que no pertenecían al área dental. Se incluyeron en la revisión 116 artículos que cumplían los criterios establecidos; se puede observar que la mayoría de las investigaciones son estudios in vitro y una pequeña parte son investigaciones clínicas o realizadas en animales, la mayoría de las investigaciones muestran resultados positivos e innovadores para el uso de las AgNPs. Los estudios muestran una óptima actividad antibacteriana de las AgNPs cuando estas se combinan con materiales dentales como enjuagues, soluciones irrigantes, cementos, resinas, adhesivos, recubrimientos de metales, soluciones antisépticas, apósitos quirúrgicos, por mencionar algunos. La literatura revisada muestra un prometedor futuro para las AgNPs, pues no solo tienen actividad antibacteriana frente a las principales bacterias orales aerobias y anaerobias Gram positivas y Gram negativas, sino también un efecto antifúngico y propiedades antinflamatorias, sin comprometer las propiedades de la mayoría de los materiales a los cuales son incorporadas. Sin embargo, su uso sigue siendo controvertido debido a que estos nanomateriales pertenecen a una nueva clase de material; el progreso en esta nueva disciplina (la nanotoxicología) depende de encontrar metodologías que permitan evaluar la toxicidad en estados químicos, estudios in vitro y clínicos.
Detalhes do artigo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Referências
Abbaszadegan, A., Nabavizadeh, M., Gholami, A., Aleyasin, Z. S., Dorostkar, S., Saliminasab, M., Ghasemi, Y., Hemmateenejad, B., Sharghi, H. (2015). Positively charged imidazolium-based ionic liquid-protected silver nanoparticles: a promising disinfectant in root canal treatment. International Endodontic Journal, 48(8): 790-800. https://doi.org/10.1111/iej.12377.
Abdou, S. A., Mohamed, A. I., Aly, Y. (2023). Cytotoxicity evaluation of three different types of intracanal medications. Journal of International Oral Health, 15(4): 384-390. https://doi.uam.elogim.com/10.4103/jioh.jioh_50_23.
Adeyemi, O., Faniyan T. (2014). Antioxidant status of rats administered silver nanoparticles orally. Journal of Taibah University Medical Science, 9: 182-186. https://doi.org/10.1016/j.jtumed.2014.03.002.
Afkhami, F., Akbari, S., Chiniforush, N. (2017). Enterococcus faecalis elimination in root canals using silver nanoparticles, photodynamic therapy, diode laser, or laser-activated nanoparticles: an in vitro study. Journal of Endodontics, 43(2): 279-282. https://doi.org/10.1016/j.joen.2016.08.029.
Afkhami, F., Pourhashemi, S. J., Sadegh, M., Salehi, Y., Fard, M. J. (2015). Antibiofilm efficacy of silver nanoparticles as a vehicle for calcium hydroxide medicament against Enterococcus faecalis. Journal of Dentistry, 43(12): 1573-1579. https://doi.org/10.1016/j.jdent.2015.08.012.
Ahmed, A., Muhammad, N., Ali, A., Mutahir, Z., Khan, A. S., Sharif, F., Shah, A. T., Haq, Z. U., Liaqat, S., Khan, M. A. (2022). Effect of augmentin-coated silver nanoparticles on biological and mechanical properties of orthodontic bracket cement. Materials Technology, 37(14): 2983-2994. https://doi.uam.elogim.com/10.1080/10667857.2022.2103612.
Ahmed, O. A. K., Sibuyi, N. R. S., Fadaka, A. O., Maboza, E., Olivier, A., Madiehe, A. M., Meyer, M., Geerts, G. (2023). Prospects of using gum arabic silver nanoparticles in toothpaste to prevent dental caries. Pharmaceutics, 15(3): 871. https://doi.uam.elogim.com/10.3390/pharmaceutics15030871.
Ai, M., Du, Z., Zhu, S., Geng, H., Zhang, X., Cai, Q., Yang, X. (2017). Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application. Dental Materials, 33(1) :12-22. https://doi.org/10.1016/j.dental.2016.09.038.
Al, N., Zuhair, A., Ettihad, C., John R. (2020). Effectiveness of a novel nano-silver fluoride with green tea extract compared with silver diamine fluoride: a ran-domized, controlled, non-inferiority trial. International Journal of Dentistry and Oral Science, 7(6): 753-761.
Alexander J. W. (2009). History of the medical use of silver. Surgical Infections, 10(3): 289-292. https://doi.org/10.1089/sur.2008.9941.
Ali, A., Ismail, H., Amin, K. (2022). Effect of nanosilver mouthwash on prevention of white spot lesions in patients undergoing fixed orthodontic treatment a randomized double-blind clinical trial. Journal of Dental Sciences, 17(1): 249-255. https://doi.org/10.1016/j.jds.2021.03.016.
Almanza-Reyes, H., Moreno, S., Plascencia-López, I., Alvarado-Vera, M., Patrón-Romero, L., Borrego, B., Reyes-Escamilla, A., Valencia-Manzo, D., Brun, A., Pestryakov, A., Bogdanchikova, N. (2021). Evaluation of silver nanoparticles for the prevention of SARS-CoV-2 infection in health workers: in vitro and in vivo. PloS One, 16(8): e0256401. https://doi.org/10.1371/journal.pone.0256401.
Arif, W., Rana, N. F., Saleem, I., Tanweer, T., Khan, M. J., Alshareef, S. A., Sheikh, H. M., Alaryani, F. S., AL-Kattan, M. O., Alatawi, H. A., Menaa, F., Nadeem, A. Y. (2022). Antibacterial activity of dental composite with ciprofloxacin loaded silver nanoparticles. Molecules, 27(21): 7182. https://doi.uam.elogim.com/10.3390/molecules27217182.
Aziz, S. G., Aziz, S. G., Akbarzadeh, A. (2017). Advances in silver nanotechnology: an update on biomedical applications and future perspectives. Drug Research, 67(4): 198-203. https://doi.org/10.1055/s-0042-112810.
Bahador, A., Pourakbari, B., Bolhari, B., Hashemi, F. B. (2015). In vitro evaluation of the antimicrobial activity of nanosilver-mineral trioxide aggregate against frequent anaerobic oral pathogens by a membrane-enclosed immersion test. Biomedical Journal, 38(1): 77-83. https://doi.org/10.4103/2319-4170.132901.
Barillo, D. J., Marx, D. E. (2014). Silver in medicine: a brief history BC 335 to present. Burns: Journal of the International Society for Burn Injuries, 40(1): S3-S8. https://doi.org/10.1016/j.burns.2014.09.009.
Barkat, M. A., Harshita, Beg, S., Naim, M. J., Pottoo, F. H., Singh, S. P., Ahmad, F. J. (2018). Current progress in synthesis, characterization and applications of silver nanoparticles: precepts and prospects. Recent Patents on Anti-infective Drug Discovery, 13(1): 53-69. https://doi.org/10.2174/1574891X12666171006102833.
Bee, S.-L., Bustami, Y., Ul-Hamid, A., Lim, K., Abdul Hamid, Z. A. (2021). Synthesis of silver nanoparticle-decorated hydroxyapatite nanocomposite with combined bioactivity and antibacterial properties. Journal of Materials Science: Materials in Medicine, 32(9): 1-12. https://doi.uam.elogim.com/10.1007/s10856-021-06590-y.
Besinis, A., De Peralta, T., Handy, R. D. (2014). Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology, 8(7): 745-754. https://doi.org/10.3109/17435390.2013.825343.
Bhavya, B., Ibrahim, F., Safiya, F. (2021). Effect of silver nanoparticle membrane on wound healing and patient satisfaction following flap surgery. International Journal of Applied Dental Science, 7(2): 155-60. https://doi.org/10.22271/oral.2021.v7.i2c.1202.
Celikten, B., Amasya, G., Oncu, A., Koohnavard, M., Saklar, F. (2022). Effects of chitosan-containing silver nanoparticles or chlorhexidine as the final irrigant on the bond strength of resin-based root canal sealers. Journal of Dental Research, Dental Clinics, Dental Prospects, 16(2): 118-122. https://doi.uam.elogim.com/10.34172/joddd.2022.020.
Chávez-Andrade, G. M., Tanomaru-Filho, M., Rodrigues, E. M., Gomes-Cornélio, A. L., Faria, G., Bernardi, M. I. B., Guerreiro-Tanomaru, J. M. (2017). Cytotoxicity, genotoxicity and antibacterial activity of poly(vinyl alcohol)-coated silver nanoparticles and farnesol as irrigating solutions. Archives of Oral Biology, 84: 89-93. https://doi.org/10.1016/j.archoralbio.2017.09.028.
Chittrarasu, M., Ahamed, A., Ravi, V. (2021). Antimicrobial efficacy of green synthesis of silver nanoparticles against cariogenic pathogens – An in vitro study. Journal of Pharmacy & Bioallied Sciences, 13: 1188-1192. https://doi.uam.elogim.com/10.4103/jpbs.jpbs_338_21.
Chladek, G., Mertas, A., Krawczyk, C., Stencel, R., Jabłońska-Stencel, E. (2016) The influence of silver nanoparticles introduced into RTV-silicone matrix on the activity against Streptococcus mutans. Archives of Material Science and Engineering, 78: 59-65. https://www.researchgate.net/publication/311878669_The_influence_of_silver_nanoparticles_introduced_into_RTV-silicone_matrix_on_the_activity_against_Streptococcus_mutans.
De Matteis, V., Cascione, M., Toma, C. C., Leporatti, S. (2018). Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials, 8(5): 319. Basilea, Suiza, Switzerland. https://doi.org/10.3390/nano8050319.
Degrazia, F. W., Leitune, V. C., Garcia, I. M., Arthur, R. A., Samuel, S. M., Collares, F. M. (2016). Effect of silver nanoparticles on the physicochemical and antimicrobial properties of an orthodontic adhesive. Journal of Applied Oral Science, 24(4): 404-410. https://doi.org/10.1590/1678-775720160154.
Dhir S. (2013). Biofilm and dental implant: the microbial link. Journal of Indian Society of Periodontology, 17(1): 5-11. https://doi.org/10.4103/0972-124X.107466.
Do Nascimento, C., Paulo, D. F., Pita, M. S., Pedrazzi, V., de Albuquerque Junior, R. F. (2015). Microbial diversity of the supra and subgingival biofilm of healthy individuals after brushing with chlorhexidine or silver coated toothbrush bristles. Canadian Journal of Microbiology, 61(2): 112-123. https://doi.org/10.1139/cjm-2014-0565.
Donghyun, L., Sang, L., Ji-Hoi, M., Joo, K., Dong, H, Jae, B, Ho-Nam, L., Keun, K . (2018). Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. Journal of Industrial and Engineering Chemistry, 66(2018): 196-202. https://doi.uam.elogim.com/10.1016/j.jiec.2018.05.030.
Dos Santos, C. A., Seckler, M. M., Ingle, A. P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A. y Rai, M. (2014). Silver nanoparticles: therapeutical uses, toxicity, and safety issues. Journal of Pharmaceutical Sciences, 103(7): 1931-1944. https://doi.org/10.1002/jps.24001.
Dos Santos, V., Gadelha, A., Pelagio, M., Rodríguez, J., Araújo, J., Vilela, M., Freire, H., Galembeck, A., Rosenblatt A. (2017). Antimicrobial activity of silver nanoparticle colloids of different sizes and shapes against Streptococcus mutans. Research on Chemical Intermediates, 43(10): 5889-99. https://doi.org/10.1007/s11164-017-2969-5.
Ebrahiminezhad, A., Raee, M. J., Manafi, Z., Sotoodeh Jahromi, A., Ghasemi, Y. (2016). Ancient and novel forms of silver in medicine and biomedicine. Journal of Advanced Medical Sciences and Applied Technologies, 2(1): 122-128. https://doi.org/10.18869/nrip.jamsat.2.1.122.
Elgamily, H. M., El-Sayed, H. S., Abdelnabi, A. (2018). The antibacterial effect of two cavity disinfectants against one of cariogenic pathogen: an in vitro comparative study. Contemporary Clinical Dentistry, 9(3): 457-462. https://doi.org/10.4103/ccd.ccd_308_18.
Emmanuel, R., Palanisamy, S., Chen, S. M., Chelladurai, K., Padmavathy, S., Saravanan, M., Prakash, P., Ajmal Ali, M., Al-Hemaid, F. M. (2015). Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease-causing microorganisms. Materials Science & Engineering. C, Materials for Biological Applications, 56: 374-379. https://doi.org/10.1016/j.msec.2015.06.033.
Ertem, E., Gutt, B., Zuber, F., Allegri, S., Le Ouay, B., Mefti, S., Formentin, K., Stellacci, F., Ren, Q. (2017). Core-Shell silver nanoparticles in endodontic disinfection solutions enable long-term antimicrobial effect on oral biofilms. ACS Applied Materials & Interfaces, 9(40): 34762-34772. https://doi.org/10.1021/acsami.7b13929.
Espinosa, F., López, N., Cabada, D., Reyes, S., Zragoza, A., Constandse, D., Donohué, A., Tovar, K., Cuevas, C., Kobayashi T. (2018). Antiadherence and antimicrobial properties of silver nanoparticles against Streptococcus mutans on brackets and wires used for orthodontic treatments. Journal of Nanomaterial, 2018: 1-11. https://doi.org/10.1155/2018/9248527.
Farahani, A., Beyrami, A., Piri, H., Naghizadeh, A., Imani, H., Farahani, M. (2018). Evaluation of antibacterial properties of resin composites containing silver nanoparticles on Streptococcus mutans. Journal Dental Oral Health, 5: 1-6. http://www.jscholarpublishers.com/articles/JDOH/Evaluation-of-Antibacterial.pdf.
Farshad, M., Abbaszadegan, A., Ghahramani, Y., Jamshidzadeh, A. (2017). Effect of imidazolium-based silver nanoparticles on root dentin roughness in comparison with three common root canal irrigants. Iranian Endodontic Journal, 12(1): 83-86. https://doi.org/10.22037/iej.2017.17.
Fatemeh, K., Mohammad Javad, M., Samaneh, K. (2017). The effect of silver nanoparticles on composite shear bond strength to dentin with different adhesion protocols. Journal of Applied Oral Science, 25(4): 367-373. https://doi.org/10.1590/1678-7757-2016-0391.
Gao, A., Hang, R., Huang, X., Zhao, L., Zhang, X., Wang, L., Tang, B., Ma, S., Chu, P. K. (2014). The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials, 35(13): 4223-4235. https://doi.org/10.1016/j.biomaterials.2014.01.058.
Ghahremanloo, A., Movahedzadeh, M. (2016). The effect of silver nanoparticles on Candida albicans and Streptococcus mutans in denture acrylic resins. Journal of Dental Materials and Techniques, 5(1): 23-30. https://doi.org/10.22038/jdmt.2015.6248.
Ginjupalli, K., Alla, R. K., Tellapragada, C., Gupta, L., Upadhya Perampalli, N. (2016). Antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles. The Journal of Prosthetic Dentistry, 115(6): 722-728. https://doi.org/10.1016/j.prosdent.2015.11.006.
Gligorijevic, N., Mihajlov-krstev, T., Kostic, M., Nikolic, L., Stankovic, N., Nikolic, V., Dinic, A., Igic, M., Bernstein, N. (2022). Antimicrobial properties of silver-modified denture base resins. Nanomaterials, 2453. https://doi.uam.elogim.com/10.3390/nano12142453.
Habiboallah, G., Mahdi, Z., Majid, Z., Nasroallah, S., Taghavi, A., Forouzanfar, A., Arjmand N. (2014). Enhancement of gingival wound healing by local application of silver nanoparticles periodontal dressing following surgery: a histological assessment in animal model. Modern Research in Inflammation, 3 (3): 128-38. https://doi.org/10.4236/mri.2014.33016.
Halkai, K. R., Halkai, R., Mudda, J. A., Shivanna, V., Rathod, V. (2018). Antibiofilm efficacy of biosynthesized silver nanoparticles against endodontic-periodontal pathogens: an in vitro study. Journal of Conservative Dentistry, 21(6): 662-666. https://doi.org/10.4103/JCD.JCD_203_18.
Hao-Hueng, Chang, Tseng, Y. T., Huang, S. W., Kuo, Y. F., Yeh, C. L., Wu, C. H., Huang, Y. C., Jeng, R. J., Lin, J. J., Lin, C. P. (2020). Evaluation of carbon dioxide-based urethane acrylate composites for sealers of root canal obturation. Polymers, 12(2): 482. https://doi.uam.elogim.com/10.3390/polym12020482.
Hernández-Venegas, P. A., Martínez-Martínez, R. E., Zaragoza-Contreras, E. A., Domínguez-Pérez, R. A., Reyes-López, S. Y., Donohue-Cornejo, A., Cuevas-González, J. C., Molina-Frechero, N., Espinosa-Cristóbal, L. F. (2023). Bactericidal activity of silver nanoparticles on oral biofilms related to patients with and without periodontal disease. Journal of Functional Biomaterials, 14(6): 311. https://doi.uam.elogim.com/10.3390/jfb14060311.
Hyun, J. S., Lee, B. S., Ryu, H. Y., Sung, J. H., Chung, K. H., Yu, I. J. (2008). Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicology Letters, 182(1-3): 24-28. https://doi.org/10.1016/j.toxlet.2008.08.003.
Ioannidis, K., Niazi, S., Mylonas, P., Mannocci, F., Deb, S. (2019). The synthesis of nano silver-graphene oxide system and its efficacy against endodontic biofilms using a novel tooth model. Dental Materials, 35(11): 1614-1629. https://doi.uam.elogim.com/10.1016/j.dental.2019.08.105.
Jafari, A., Nezhad Fard, R. M., Shahabi, S., Abbasi, F., Shahedin, G. J., Bakhtiari, R. (2021) Optimization of antimicrobial efficiency of silver nanoparticles against three oral microorganisms in irreversible hydrocolloid impressions. Iranian Journal of Microbiology, 13(6): 862-870.
Ji, J. H., Jung, J. H., Kim, S. S., Yoon, J. U., Park, J. D., Choi, B. S., Chung, Y. H., Kwon, I. H., Jeong, J., Han, B. S., Shin, J. H., Sung, J. H., Song, K. S., Yu, I. J. (2007). Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology, 19(10): 857-871. https://doi.org/10.1080/08958370701432108.
Jiménez-Ramírez A., Martínez-Martínez, R., Ayala-Herrera, J., Zaragoza-Contreras, E., Domínguez-Pérez, R., Reyes-López, S., Donohue-Cornejo, A., Cuevas-González, J., Silva-Benítez, E., Espinosa-Cristóbal, L. (2021). Antimicrobial activity of silver nanoparticles against clinical biofilms from patients with and without dental caries. Journal of Nanomaterials, 1: 13. https://doi.org/10.1155/2021/5587455.
Jonaidi-Jafari, N., Izadi, M., Javidi, P. (2016). The effects of silver nanoparticles on antimicrobial activity of ProRoot mineral trioxide aggregate (MTA) and calcium enriched mixture (CEM). Journal of Clinical and Experimental Dentistry, 8(1): e22-e26. https://doi.org/10.4317/jced.52568.
Kalita, U., Tyagi, V. K., Gupta, S. J., Vaish, S., Sharma, N. (2019). Comparative evaluation of silver nanoparticle gel and chlorhexidine gel as an adjunct to scaling and root planning in management of chronic periodontitis. A clinic microbiological study. Journal of Dental Specialities, 7(2): 89-94. https://doi.org/10.18231/j.jds.2019.022.
Kim, J. S., Sung, J. H., Ji, J. H., Song, K. S., Lee, J. H., Kang, C. S., Yu, I. J. (2011). In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure. Safety and Health at Work, 2(1): 34-38. https://doi.org/10.5491/SHAW.2011.2.1.34.
Kim, Y. S., Kim, J. S., Cho, H. S., Rha, D. S., Kim, J. M., Park, J. D., Choi, B. S., Lim, R., Chang, H. K., Chung, Y. H., Kwon, I. H., Jeong, J., Han, B. S., Yu, I. J. (2008). Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology, 20(6): 575-583. https://doi.org/10.1080/08958370701874663.
Kokura, S., Handa, O., Takagi, T., Ishikawa, T., Naito, Y., Yoshikawa, T. (2010). Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(4): 570-574. https://doi.org/10.1016/j.nano.2009.12.002.
Kranz, S., Guellmar, A., Voelpel, A., Lesser, T., Tonndorf-Martini, S., Schmidt, J., Schrader, C., Faucon, M., Finger, U., Pfister, W., Diefenbeck, M., Sigusch, B. (2019). Bactericidal and biocompatible properties of plasma chemical oxidized titanium (TiOB®) with antimicrobial surface functionalization. Materials, 12(6): 866. Basilea, Suiza. https://doi.org/10.3390/ma12060866.
Lee, S. J., Heo, D. N., Lee, D., Heo, M., Rim, H., Zhang, L. G., Park, S. A., Do, S. H., Moon, J. H., Kwon, I. K. (2016). One-step fabrication of AgNPs embedded hybrid dual nanofibrous oral wound dressings. Journal of Biomedical Nanotechnology, 12(11): 2041-2050. https://doi.org/10.1166/jbn.2016.2304.
Lee, S., Heo, M., Lee, D., Han, S., Moon, J., Lim, H., Kwon K. (2018). Preparation and characterization of antibacterial orthodontic resin containing silver nanoparticles. Applied Surface Science, 432: 317-23. https://doi.org//10.1016/j.apsusc.2017.04.030.
Liao, C., Li, Y., Tjong, S. C. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. International Journal of Molecular Sciences, 20(2): 449. https://doi.org/10.3390/ijms20020449.
Liu, X., Gan, K., Liu, H., Song, X., Chen, T., Liu, C. (2017). Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering. Dental Materials, 33(9): e348-e360. https://doi.org/10.1016/j.dental.2017.06.014.
Loyola-Rodríguez, J. P., Torres-Méndez, F., Espinosa-Cristobal, L. F., García-C. J. O., Loyola-Leyva, A., González, F. J., Soto-Barreras, U., Nieto-Aguilar, R., Contreras-Palma, G. (2019). Antimicrobial activity of endodontic sealers and medications containing chitosan and silver nanoparticles against Enterococcus faecalis. Journal of Applied Biomaterials & Functional Materials, 17(3): 28-36. https://doi.uam.elogim.com/10.1177/2280800019851771.
Mackevica, A., Olsson, M. E., Hansen, S. F. (2017). The release of silver nanoparticles from commercial toothbrushes. Journal of Hazardous Materials, 322(Pt A): 270-275. https://doi.org/10.1016/j.jhazmat.2016.03.067.
Mahmoud, A., Moussa, S., El Backly, R., El-Gendy, R. (2022). Investigating the residual effect of silver nanoparticles gel as an intra-canal medicament on dental pulp stromal cells. BMC Oral Health, 22(1): 1-14. https://doi.uam.elogim.com/10.1186/s12903-022-02542-2.
Maneewattanapinyo, P., Banlunara, W., Thammacharoen, C., Ekgasit, S., Kaewamatawong, T. (2011). An evaluation of acute toxicity of colloidal silver nanoparticles. The Journal of Veterinary Medical Science, 73(11): 1417-1423. https://doi.org/10.1292/jvms.11-0038.
Massa, M. A., Covarrubias, C., Bittner, M., Fuentevilla, I. A., Capetillo, P., Von Marttens, A. y Carvajal, J. C. (2014). Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Materials Science & Engineering. C, Materials for Biological Applications, 45: 146-153. https://doi.org/10.1016/j.msec.2014.08.057.
Mathur, P., Jha, S., Ramteke, S., Jain, N. K. (2018). Pharmaceutical aspects of silver nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 46(1): 115-126. https://doi.org/10.1080/21691401.2017.1414825.
Matsumoto-Nakano M. (2018). Role of Streptococcus mutans surface proteins for biofilm formation. The Japanese Dental Science Review, 54(1): 22-29. https://doi.org/10.1016/j.jdsr.2017.08.002.
Mei, L., Chieng, J., Wong, C., Benic, G., Farella, M. (2017). Factors affecting dental biofilm in patients wearing fixed orthodontic appliances. Progress in Orthodontics, 18(1): 4. https://doi.org/10.1186/s40510-016-0158-5.
Mendes, M. S., Resende, L. D., Pinto, C. A., Raldi, D. P., Cardoso, F. G., Habitante, S. M. (2017). Radiopacity of mineral trioxide aggregate with and without inclusion of silver nanoparticles. The Journal of Contemporary Dental Practice, 18(6): 448-451. https://doi.org/10.5005/jp-journals-10024-2063.
Mendes-Gouvêa, C. C., Do Amaral, J. G., Fernandes, R. A., Fernandes, G. L., Gorup, L. F., Camargo, E. R., Delbem, A. C. B., Barbosa, D. B. (2018). Sodium trimetaphosphate and hexametaphosphate impregnated with silver nanoparticles: characteristics and antimicrobial efficacy. Biofouling, 34(3): 299-308. https://doi.org/10.1080/08927014.2018.1437146.
Mhaske, A. R., Shetty, P. C., Bhat, N. S., Ramachandra, C. S., Laxmikanth, S. M., Nagarahalli, K., Tekale, P. D. (2015). Antiadherent and antibacterial properties of stainless steel and NiTi orthodontic wires coated with silver against Lactobacillus acidophilus: an in vitro study. Progress in Orthodontics, 16: 40. https://doi.org/10.1186/s40510-015-0110-0.
Misba, L., Kulshrestha, S., Khan, A. U. (2016). Antibiofilm action of a toluidine blue O-silver nanoparticle conjugate on Streptococcus mutans: a mechanism of type I photodynamic therapy. Biofouling, 32(3): 313-328. https://doi.org/10.1080/08927014.2016.1141899.
Mohandoss, S., Murugaboopathy, V., Haricharan, P. B., Hebbal, M. I., Saadaldin, S., Soliman, M., Eldwakhly, E. (2023). Ulvan as a reducing agent for the green synthesis of silver nanoparticles: a novel mouthwash. Inorganics, 11(1): 5. https://doi.uam.elogim.com/10.3390/inorganics11010005.
Morales, R. A., Castañares, R., Schougal, R., Guadarrama, S., Sánchez, V. (2018) Antibacterial efect of silver nanoparticles versus chlorhexidine against Streptococcus mutans and Lactobacillus casei. En Silver nanoparticles - Fabrication, characterization and applications. IntechOpen, 117-29. https://doi.org/10.5772/intechopen.76183.
Moreira, D. M., Oei, J., Rawls, H. R., Wagner, J., Chu, L., Li, Y., Zhang, W., Whang, K. (2015). A novel antimicrobial orthodontic band cement with in situ-generated silver nanoparticles. The Angle Orthodontist, 85(2): 175-183. https://doi.org/10.2319/022314-127.1.
Morio, K., Thayer, E. L., Bates, A. M., Brogden, K. A. (2019). 255-nm light emitting diode kills Enterococcus faecalis and induces the production of cellular biomarkers in human embryonic palatal mesenchyme cells and gingival fibroblasts. Journal of Endodontics, 45(6): 774-783. https://doi.org/10.1016/j.joen.2019.02.016.
Nabavizadeh, M., Ghahramani, Y., Abbaszadegan, A., Jamshidzadeh, A., Jenabi, P., Makarempour, A. (2018). In vivo biocompatibility of an ionic liquid-protected silver nanoparticle solution as root canal irrigant. Iranian Endodontic Journal, 13(3): 293-298. https://doi.org/10.22037/iej.v13i3.17386.
Nam, K. Y. (2017). Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles. The Journal of Advanced Prosthodontics, 9(3): 217-223. https://doi.org/10.4047/jap.2017.9.3.217.
Nandi, S. K., Shivaram, A., Bose, S., Bandyopadhyay, A. (2018). Silver nanoparticle deposited implants to treat osteomyelitis. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 106(3): 1073-1083. https://doi.org/10.1002/jbm.b.33910.
Noronha, V. T., Paula, A. J., Durán, G., Galembeck, A., Cogo-Müller, K., Franz-Montan, M., Durán, N. (2017). Silver nanoparticles in dentistry. Dental Materials, 33(10): 1110-1126. https://doi.org/10.1016/j.dental.2017.07.002.
Nunes De Souza Neto, F., Lang Sala, R., Aparecido Fernandes, R., Pardim Oliveira Xavier, T., Cruz, S. A., Paranhos, C. M., Monteiro, D. R., Barros Barbosa, D., Botazzo Delbem, A. C., Rodrigues De Camargo, E. (2019). Effect of synthetic colloidal nanoparticles in acrylic resin of dental use. European Polymer Journal, 112: 531-538. https://doi.uam.elogim.com/10.1016/j.eurpolymj.2018.10.009.
Paiva, L., Fidalgo, T. K. S., Da Costa, L. P., Maia, L. C., Balan, L., Anselme, K., Ploux, L., Thiré, R. M. S. M. (2018). Antibacterial properties and compressive strength of new one step preparation silver nanoparticles in glass ionomer cements (NanoAg-GIC). Journal of Dentistry, 69: 102-109. https://doi.org/10.1016/j.jdent.2017.12.003.
Pelgrift, R. Y., Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65(13-14): 1803-1815. https://doi.org/10.1016/j.addr.2013.07.011.
Pena, Mirle, Luz M. López-Marin, Blanca Millán, Patricia Manzano-Gallosso. (2021). Polymer mediated synthesis of cationic silver nanoparticles as an effective anti-fungal and anti-biofilm agent against Candida species. Colloid and Interface Science Communications, 43. 100449. https://doi.org/10.1016/j.colcom.2021.100449.
Pérez-Díaz, M. A., Boegli, L., James, G., Velasquillo, C., Sánchez-Sánchez, R., Martínez-Martínez, R. E., Martínez-Castañón, G. A., Martínez-Gutiérrez, F. (2015). Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Materials Science & Engineering. C, Materials for Biological Applications, 55: 360-366. https://doi.org/10.1016/j.msec.2015.05.036.
Pokrowiecki, R., Zaręba, T., Szaraniec, B., Pałka, K., Mielczarek, A., Menaszek, E., Tyski, S. (2017). In vitro studies of nanosilver doped titanium implants for oral and maxillofacial surgery. International Journal of Nanomedicine, 12: 4285-4297. https://doi.org/10.2147/IJN.S131163.
Presas Fernández, A. M. (2016). En México, la enfermedad periodontal tiene una prevalencia de 70 por ciento. http://www.dgcs.unam.mx/boletin/bdboletin/2016_476.html. (Consultado, junio 16, 2022).
Priyadarshini, B. M., Fawzy, A. S. (2017). Potentiating the antibacterial effect of silver nanospheres by surface-capping with chlorhexidine gluconate. Journal of Nanoparticle Research, 19: 147. https://doi.org/10.1007/s11051-017-3846-2.
Qing, Y., Cheng, L., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., Liu, H., Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International Journal of Nanomedicine, 13: 3311-3327. https://doi.org/10.2147/IJN.S165125.
Rajendran, V., Suma, K., Ali, S., Karthigeyan, R., Kalarani, G. (2021). Antimicrobial efficacy of irreversible hydrocolloid impression impregnated with silver nanoparticles compared to surface disinfected impressions - An in vivo study. Journal of Pharmacy & Bioallied Sciences, 13: 532-536. https://doi.uam.elogim.com/10.4103/jpbs.JPBS_565_20.
Rani, S., Chandra, R. V., Reddy, A. A., Reddy, B. H., Nagarajan, S., Naveen, A. (2015). Evaluation of the antibacterial effect of silver nanoparticles on guided tissue regeneration membrane colonization an in vitro study. Journal of the International Academy of Periodontology, 17(3): 66-76. https://pubmed.ncbi.nlm.nih.gov/26373223/.
Rodrigues, C. T., De Andrade, F. B., De Vasconcelos, L. R. S. M., Midena, R. Z., Pereira, T. C., Kuga, M. C., Duarte, M. A. H., Bernardineli, N. (2018). Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules. International Endodontic Journal, 51(8): 901-911. https://doi.org/10.1111/iej.12904.
Saafan, A., Zaazou, M. H., Sallam, M. K., Mosallam, O., Danaf, H. A. (2018). Assessment of photodynamic therapy and nanoparticles effects on caries models. Open access Macedonian Journal of Medical Sciences, 6(7): 1289-1295. https://doi.org/10.3889/oamjms.2018.241.
Sawan, N. M., Alsagob, E. I., Ben Gassem, A. A., Alshami, A. A. (2021). Graphene functionalized with nanosilver particle-modified methacrylate-based bonding agent improves antimicrobial capacity and mechanical strength at tooth orthodontic bracket interface. Polymer Composites, 5850-5858. https://doi.uam.elogim.com/10.1002/pc.26265.
Saygi, K. O., Bayram, H. M., Bayram, E. (2022). Green synthesis of silver nanoparticles using artichoke flower petals and application in endodontic dentistry. Biomass Conversion and Biorefinery: Processing of Biogenic Material for Energy and Chemistry, 1-9. https://doi.uam.elogim.com/10.1007/s13399-022-02857-8.
Scarpelli, B. B., Punhagui, M. F., Hoeppner, M. G., Almeida, R. S. C., Juliani, F. A., Guiraldo, R. D., Berger, S. B. (2017). In vitro evaluation of the remineralizing potential an antimicrobial activity of cariostatic agent with silver nanoparticles. Brazilian Dental Journal, 28(6): 738-743. https://doi.org/10.1590/0103-6440201701365.
Schwass, D. R., Lyons, K. M., Love, R., Tompkins, G. R., Meledandri, C. J. (2018). Antimicrobial activity of a colloidal AgNPs suspension demonstrated in vitro against monoculture biofilms: toward a novel tooth disinfectant for treating dental caries. Advances in Dental Research, 29(1): 117-123. https://doi.org/10.1177/0022034517736495.
Serrano-Díaz, P., Williams, D., Vega-Arreguin, J., Manisekaran, R., Twigg, J., Morse, D., García-Contreras, R., Arenas-Arrocena, C., Acosta-Torres, L. (2023). Geranium leaf-mediated synthesis of silver nanoparticles and their transcriptomic effects on Candida albicans. Green Processing and Synthesis. https://www.degruyter.com/document/doi/10.1515/gps-2022-8105/html.
Shahare, B., Yashpal, M. (2013). Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicology Mechanisms and Methods, 23(3): 161-167. https://doi.org/10.3109/15376516.2013.764950.
Sharma, D., Misba, L., Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance and Infection Control, 16(8): 76. https://doi.org/10.1186/s13756-019-0533-3.
Shawky, H., Basha, S., Batouti, G., Kassem, A. (2015). Evaluation of clinical and antimicrobial efficacy of silver nanoparticles and tetracycline films in the treatment of periodontal pockets. IOSR Journal of Dental and Medical Science, 14: 113-23. https://www.researchgate.net/publication/299391569_Evaluation_of_Clinical_and_Antimicrobial_Efficacy_of_Silver_Nanoparticles_and_Tetracycline_Films_in_the_Treatment_of_Periodontal_Pockets.
Shen, X. T., Zhang, Y. Z., Xiao, F., Zhu, J., Zheng, X. D. (2017). Effects on cytotoxicity and antibacterial properties of the incorporations of silver nanoparticles into the surface coating of dental alloys. Journal of Zhejiang University. Science. B, 18(7): 615-625. https://doi.org/10.1631/jzus.B1600555.
Sirisha, P., Gayathri, G. V., Dhoom, S. M., Amulya, K. S. (2018). Antimicrobial effect of silver nanoparticles synthesized with Ocimum sanctum leaf extract on periodontal pathogens. Journal Oral Health Dental Science, 1(1): 1-7. https://doi.org/2F10.18875/2F2577-1485.1.106.
Sodagar, A., Akhavan, A., Hashemi, E., Arab, S., Pourhajibagher, M., Sodagar, K., Kharrazifard, M. J., Bahador, A. (2016). Evaluation of the antibacterial activity of a conventional orthodontic composite containing silver/hydroxyapatite nanoparticles. Progress in Orthodontics, 17(1): 40. https://doi.org/10.1186/s40510-016-0153-x.
Tărăboanță, I., Burlec, A. F., Stoleriu, S., Corciovă, A., Fifere, A., Batir-Marin, D., Hăncianu, M., Mircea, C., Nica, I., Tărăboanță-Gamen, A. C., Andrian, S. (2023). Influence of the loading with newly green silver nanoparticles synthesized using Equisetum sylvaticum on the antibacterial activity and surface hardness of a composite resin. Journal of Functional Biomaterials, 14(7): 402. https://doi.uam.elogim.com/10.3390/jfb14080402.
Tristán-López, J.-D., Niño-Martínez, N., Kolosovas-Machuca, E.-S., Patiño-Marín, N., De Alba-Montero, I., Bach, H., Martínez-Castañón, G.-A. (2023). Application of silver nanoparticles to improve the antibacterial activity of orthodontic adhesives: an in vitro study. International Journal of Molecular Sciences, 24(2): 1401. https://doi.uam.elogim.com/10.3390/ijms24021401.
Ventola, C. L. (2012). The nanomedicine revolution: part 2: current and future clinical applications. P & T: A Peer-Reviewed Journal for Formulary Management, 37(10): 582-591. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474440/.
Ventola, C. L. (2017). Progress in nanomedicine: approved and investigational nanodrugs. P & T: A Peer-Reviewed Journal for Formulary Management, 42(12): 742-755. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720487/.
Venugopal, A., Muthuchamy, N., Tejani, H., Gopalan, A. I., Lee, K. P., Lee, H. J., Kyung, H. M. (2017). Incorporation of silver nanoparticles on the surface of orthodontic microimplants to achieve antimicrobial properties. Korean Journal of Orthodontics, 47(1): 3-10. https://doi.org/10.4041/kjod.2017.47.1.3.
Widbiller, M., Schmalz, G. (2021). Endodontic regeneration: hard shell, soft core. Odontology, 109(2): 303-312. https://doi.org/10.1007/s10266-020-00573-1.
Wu, D., Fan, W., Kishen, A., Gutmann, J. L., Fan, B. (2014). Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. Journal of Endodontics, 40(2): 285-290. https://doi.org/10.1016/j.joen.2013.08.022.
Wu, R., Zhao, Q., Lu, S., Fu, Y., Yu, D., Zhao, W. (2018). Inhibitory effect of reduced graphene oxide-silver nanocomposite on progression of artificial enamel caries. Journal of Applied Oral Science, 27: e20180042. https://doi.org/10.1590/1678-7757-2018-0042.
Xiao, S., Wang, H., Liang, K., Tay, F., Weir, M. D., Melo, M. A. S., Wang, L., Wu, Y., Oates, T. W., Ding, Y. y Xu, H. H. K. (2019). Novel multifunctional nanocomposite for root caries restorations to inhibit periodontitis-related pathogens. Journal of Dentistry, 81: 17-26. https://doi.org/10.1016/j.jdent.2018.12.001.
Yuqiong, Yang, Yashuang Ding, Yue Fan, Lingyan Ren, Xuna Tang, Xiangfeng Meng. (2021). Application of silver nanoparticles in situ synthesized in dental adhesive resin. International Journal of Adhesion and Adhesives, 108: 102890. https://doi.uam.elogim.com/10.1016/j.ijadhadh.2021.102890.
Zhang, P., Qin, J., Zhang, B., Zheng, Y., Yang, L., Shen, Y., Zuo, B., Zhang, F. (2019). Gentamicin-loaded silk/nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis. Royal Society Open Science, 6(5): 182102. https://doi.org/10.1098/rsos.182102.
Zheng, T., Huang, X., Chen, J., Feng, D., Mei, L., Huang, Y., Quan, G., Zhu, C., Singh, V., Ran, H., Pan, X., Wu, C. Y., Wu, C., (2018). A liquid crystalline precursor incorporating chlorhexidine acetate and silver nanoparticles for root canal disinfection. Biomaterials Science, 6(3): 596-603. https://doi.org/10.1039/c7bm00764g.
Zhong, X., Song, Y., Yang, P., Wang, Y., Jiang, S., Zhang, X., Li, C. (2016). Titanium surface priming with phase-transited lysozyme to establish a silver nanoparticle-loaded chitosan/hyaluronic acid antibacterial multilayer via layer-by-layer self-assembly. PloS One, 11(1): e0146957. https://doi.org/10.1371/journal.pone.0146957.