Análisis de las propiedades vibracionales del crotonaldehído: DFT vs MD
Conteúdo do artigo principal
Resumo
La dinámica molecular (MD, por sus siglas en inglés) y la teoría del funcional de la densidad (DFT, por sus siglas en inglés) son actualmente las teorías más utilizadas en ciencia computacional de materiales. Ambas tienen alcances y aplicaciones distintas, pero convergen en ciertas áreas. El presente trabajo hace una comparación y contraste entre la exactitud de ambas teorías para modelar el espectro infrarrojo de una molécula orgánica sencilla pero representativa: el crotonaldehído. Se lleva a cabo un análisis de las energías, distancias de enlace, frecuencias e intensidades vibracionales para determinar las ventajas y desventajas de cada teoría en este marco de cálculo.
Detalhes do artigo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Referências
ATSDR. (s. f.). Toxfaqs™—Letter a | toxic substance portal | atsdr. (Consultado, noviembre 1, 2021). https://wwwn.cdc.gov/TSP/ToxFAQs/ToxFAQsLanding.aspx
Bhoskar, Ms. T., Kulkarni, Mr. O. K., Kulkarni, Mr. N. K., Patekar, Ms. S. L., Kakandikar, G. M. y Nandedkar, V. M. (2015). Genetic algorithm and its applications to mechanical engineering: A review. Materials Today: Proceedings, 2(4-5): 2624-2630. https://doi.org/10.1016/j.matpr.2015.07.219
Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24): 17953-17979. https://doi.org/10.1103/PhysRevB.50.17953
Braun, E. (2016). Open source code: Calculating an ir spectra from a lammps simulation. Zenodo. https://doi.org/10.5281/ZENODO.154672
Car, R. y Parrinello, M. (1985). Unified approach for molecular dynamics and density-functional theory. Physical Review Letters, 55(22): 2471-2474. https://doi.org/10.1103/PhysRevLett.55.2471
Cataldo, F., Iglesias-Groth, S. y Manchado, A. (2010). Low and high temperature infrared spectroscopy of c 60 and c 70 fullerenes. Fullerenes, Nanotubes and Carbon Nanostructures, 18(3): 224-235. https://doi.org/10.1080/15363831003782940
De Groot, M. S. y Lamb, J. (1957). Ultrasonic relaxation in the study of rotational isomers. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 242(1228): 36-56. https://doi.org/10.1098/rspa.1957.0152
Gallezot, P. y Richard, D. (1998). Selective hydrogenation of α,β-unsaturated aldehydes. Catalysis Reviews, 40(1-2): 81-126. https://doi.org/10.1080/01614949808007106
Haley, B. (2016). LAMMPS structure generator. https://doi.org/https://doi.org/10.4231/D34B2X60F
Haubrich, J., Loffreda, D., Delbecq, F., Sautet, P., Krupski, A., Becker, C. y Wandelt, K. (2009). Adsorption of α,β-unsaturated aldehydes on pt(111) and pt−sn alloys: Ii. crotonaldehyde. The Journal of Physical Chemistry C, 113(31): 13947-13967. https://doi.org/10.1021/jp903473m
Honorio, T. (2019). Monte Carlo molecular modeling of temperature and pressure effects on the interactions between crystalline calcium silicate hydrate layers. Langmuir, 35(11): 3907-3916. https://doi.org/10.1021/acs.langmuir.8b04156
Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science y Engineering, 9(3): 90-95. https://doi.org/10.1109/MCSE.2007.55
Infrared: Interpretation. (2013, octubre 2). Chemistry LibreTexts. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Vibrational_Spectroscopy/Infrared_Spectroscopy/Infrared%3A_Interpretation
Karhánek, D. (2020). Dakarhanek/vasp-infrared-intensities: Vasp-infrared-intensities (v1.0) [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.3930989
Kong, L. T. (2011). Phonon dispersion measured directly from molecular dynamics simulations. Computer Physics Communications, 182(10): 2201-2207. https://doi.org/10.1016/j.cpc.2011.04.019
Kresse, G. y Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16): 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169
Leach, A. R. (2001). Molecular modelling: Principles and applications, Chapter 4: Empirical Force Field Models: Molecular Mechanics, 2a ed. Prentice Hall, 165-247.
Lee, J. W., Nilson, R. H., Templeton, J. A., Griffiths, S. K., Kung, A. y Wong, B. M. (2012). Comparison of molecular dynamics with classical density functional and Poisson–Boltzmann theories of the electric double layer in nanochannels. Journal of Chemical Theory and Computation, 8(6): 2012-2022. https://doi.org/10.1021/ct3001156
Lindenmaier, R., Williams, S. D., Sams, R. L. y Johnson, T. J. (2017). Quantitative infrared absorption spectra and vibrational assignments of crotonaldehyde and methyl vinyl ketone using gas-phase mid-infrared, far-infrared, and liquid raman spectra: S-cis vs s-trans composition confirmed via temperature studies and ab initio methods. The Journal of Physical Chemistry A, 121(6): 1195-1212. https://doi.org/10.1021/acs.jpca.6b10872
Magnasco, V. (2013). Post-hartree–fock methods. En Elementary molecular quantum mechanics. Elsevier, 681-722. https://doi.org/10.1016/B978-0-444-62647-9.00016-6
Momma, K. y Izumi, F. (2011). Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6): 1272-1276. https://doi.org/10.1107/S0021889811038970
Oukhrib, R., Abdellaoui, Y., Berisha, A., Abou Oualid, H., Halili, J., Jusufi, K., Ait El Had, M., Bourzi, H., El Issami, S., Asmary, F. A., Parmar, V. S. y Len, C. (2021). DFT, Monte Carlo and molecular dynamics simulations for the prediction of corrosion inhibition efficiency of novel pyrazolylnucleosides on Cu(111) surface in acidic media. Scientific Reports, 11(1): 3771. https://doi.org/10.1038/s41598-021-82927-5
Perdew, J. P., Burke, K. y Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18): 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
Pittalis, S., Proetto, C. R., Floris, A., Sanna, A., Bersier, C., Burke, K. y Gross, E. K. U. (2011). Exact conditions in finite-temperature density-functional theory. Physical Review Letters, 107(16): 163001. https://doi.org/10.1103/PhysRevLett.107.163001
Plimpton, S. J. y Thompson, A. P. (s.f.). Pair_style lj/cut/coul/cut command—Lammps documentation. Retrieved November 1, 2021, from https://docs.lammps.org/pair_lj_cut_coul.html
Pribram-Jones, A., Grabowski, P. E. y Burke, K. (2016). Thermal density functional theory: Time-dependent linear response and approximate functionals from the fluctuation-dissipation theorem. Physical Review Letters, 116(23): 233001. https://doi.org/10.1103/PhysRevLett.116.233001
PubChem. (s. f.-a). Crotonaldehyde. (Consultado, noviembre 1, 2021). https://pubchem.ncbi.nlm.nih.gov/compound/447466
PubChem. (s. f.-b). Hazardous substances data bank (Hsdb): 2871. (Consultado, noviembre 1, 2021). https://pubchem.ncbi.nlm.nih.gov/source/hsdb/2871# section=Human-Health-Effects
Qin, W., Li, X., Bian, W.-W., Fan, X.-J. y Qi, J.-Y. (2010). Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. Biomaterials, 31(5): 1007-1016. https://doi.org/10.1016/j.biomaterials.2009.10.013
Rogge, S. M. J., Goeminne, R., Demuynck, R., Gutiérrez‐Sevillano, J. J., Vandenbrande, S., Vanduyfhuys, L., Waroquier, M., Verstraelen, T. y Van Speybroeck, V. (2019). Modeling gas adsorption in flexible metal-organic frameworks via hybrid monte carlo/molecular dynamics schemes. Advanced Theory and Simulations, 2(4): 1800177. https://doi.org/10.1002/adts.201800177
Rohatgi, A. (s. f.). Webplotdigitizer. (Consultado, noviembre 1, 2021). https://automeris.io/WebPlotDigitizer/
Smith, B. (s. f.). Alcohols—The rest of the story. Spectroscopy Online. (Consultado, noviembre 1, 2021). https://www.spectroscopyonline.com/view/alcohols-rest-story-alf3
Software for Chemistry y Materials. (2021). ReaxFF – Force field format specification. https://www.scm.com/doc/ReaxFF/ffield_descrp.html
Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., in ’t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C. y Plimpton, S. J. (2022). LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271: 108171. https://doi.org/10.1016/j.cpc.2021.108171
Van Duin, A. C. T., Dasgupta, S., Lorant, F. y Goddard, W. A. (2001). ReaxFF: A reactive force field for hydrocarbons. The Journal of Physical Chemistry A, 105(41): 9396-9409. https://doi.org/10.1021/jp004368u
Wiley, J. y Sons, Inc. (s.f.). Crotonaldehyde—Ftir—Spectrum—Spectrabase. (Consultado, noviembre 1, 2021). https://spectrabase.com/spectrum/69ZANaBjwub
Wu, X., Vanderbilt, D. y Hamann, D. R. (2005). Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Physical Review B, 72(3): 035105. https://doi.org/10.1103/PhysRevB.72.035105
Zhang, L., Zhou, M., Wang, A. y Zhang, T. (2020). Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chemical Reviews, 120(2): 683-733. https://doi.org/10.1021/acs.chemrev.9b00230