Evaluation of the antimicrobial activity of an antiseptic hydrogel prepared with silver nanoparticles (AgNPs) against Staphylococcus aureus and Pseudomonas aeruginosa Evaluación de la actividad antimicrobiana de un hidrogel antiséptico elaborado con nanopartículas de plata (AgNPs) contra Staphylococcus aureus y Pseudomonas aeruginosa
Main Article Content
Abstract
In both developed and developing countries, food and consumption habits have led us to a dead end where most of the population suffers alterations in metabolism, which leads to diseases such as type 2 diabetes mellitus (DM), high blood pressure and chronic inflammation. DM can increase the risk of having some skin problems, such as bacterial and fungal infections that lead to ulcers that are very difficult to heal, and a large percentage of patients even lose their lower extremities. A proposal for the care of ulcer wounds, diabetic foot, burns, among others, is to implement patches and/or bandages with a silver nanoparticle gel used as an antiseptic, as an alternative administration system to antibiotics to control and inhibit the colonization of microorganisms such as super bacteria. Since silver nanoparticles have great potential in biomedical applications such as bactericidal, fungicidal, antiviral or agent healing, among others. Of all its uses, one of the most important is his employment as an agent antiseptic for hygienic and medical purposes. In this work we prepared a hydrogel with a concentration of 1000 μg/mL of Ag NPs, and stability studies were carried out: pH study of the final formulation and physical study to corroborate that the hydrogel maintains its appearance, color, odor and pH for 30 days at 25 °C and 40 °C. Its antimicrobial activity was evaluated and compared against a commercial cream containing silver sulfadiazine. From the Kirby-Bauer test, an average diameter of the inhibition zones for our hydrogel was obtained that was greater than that of the inhibition zones for the commercial cream. Ttherefore, the hydrogel prepared with AgNPs has good antimicrobial activity against Staphylococcus aureus and against Pseudomonas aeruginosa.
Downloads
Article Details
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
References
Algin Yapar, E., Tuncay Tanriverdi, S., Aybar Tural, G., Gümüş, Z. P., Turunç, E., Gokce, E. H. (2020). An examination of carbopol hydrogel/organogel bigels of thymoquinone prepared by microwave irradiation method. Drug Dev Ind Pharm, October, 46(10): 1639-1646. https://doi.org/10.1080/03639045.2020.1820031. Epub 2020 Sep 16. PMID: 32935592.
American Society of Microbiology. (2009). https://asm.org/.
Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. J Antimicrob Chemother, July, 48, Suppl., 1: 5-16. https://doi.org/10.1093/jac/48.suppl_1.5. Erratum in: J Antimicrob Chemother, 2002 June, 49(6): 1049. PMID: 11420333.
Ahmad-Mansour, N., Loubet, P., Pouget, C., Dunyach-Remy, C., Sotto, A., Lavigne, J. P., Molle, V. (2021). Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments. Toxins (Basel), Septembber 23, 13(10): 677. https://doi.org/10.3390/toxins13100677. PMID: 34678970; PMCID: PMC8540 901.
Armstrong, D. G., Tan, T. W., Boulton, A. J. M., Bus, S. A. (2023 ). Diabetic foot ulcers: a review. JAMA. July 3, 330(1): 62-75. https://doi.org/10.1001/jama.2023.10578. PMID: 37395769; PMCID: PMC10723802.
Baczako, A., Fischer, T., Konstantinow, A., Volz, T. (2019) . Chronische Wunden richtig behandeln [Chronic wounds]. MMW Fortschr Med, March, 161(5): 48-56. German. https://doi.org/10.1007/s15006-019-0006-x. PMID: 30887314.
Chávez-Sandoval, B. E., Flores-Mendoza, N., Chávez-Recio, A., Balderas-López, J. A. & García-Franco, F. (2021). Biosynthesis of gold nanoparticles (AuNPs) and the reducing agents in the process. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 14(27): 1e-11e. https://doi.org/10.22201/ceiich.24485691e.2021.27.69658.
Chávez Sandoval, Blanca Estela, Alejandra Saraí Espinosa Vega, Grecia Nuñez Tahuilán, María de Lourdes Moreno Ribera, María Isabel García-Ventura, José Abraham Balderas López. (2024). Evaluation of the antimicrobial activity of an antiseptic hydrogel prepared with silver nanoparticles (AgNPs) against Staphylococcus aureus and Pseudomonas aeruginosa. Preprint in Research Square, August 2. https://doi.org/10.21203/rs.3.rs-4838660/v1.
De Francesco, F., Riccio, M., Jimi, S. (2022). Contribution of topical agents such as hya- luronic acid and silver sulfadiazine to wound healing and management of bacterial biofilm. Medicina (Kaunas), June 20, 58(6): 835. https://doi.org/10.3390/medicina58060835. PMID: 35744098; PMCID: PMC9230176.
Fang, M., Lin, L., Zheng, M., Liu, W., Lin, R. (2023). Antibacterial functionalized carbon dots and their application in bacterial infections and inflammation. J Mater Chem B, October 11, 11(39): 9386-9403. https://doi.org/10.1039/d3tb01543b. PMID: 37720998.
Gao, W., Zhang, Y., Zhang, Q., Zhang, L. (2016). Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann Biomed Eng, June, 44(6): 2049-61. https://doi.org/10.1007/s10439-016-1583-9. Epub 2016 Mar 7. PMID: 26951462; PMCID: PMC4880511.
Kim B., ParK, J. S., Choi, H. Y., Kwak, J. H., Kim, W. G. (2019). Differential effects of alkyl gallates on quorum sensing in Pseudomonas aeruginosa. Sci Rep. May 23, 9(1): 7741. https://doi.org/10.1038/s41598-019-44236-w. PMID: 31123307; PMCID: PMC6533263.
Medina-Solano, A. M., Moreno-Rivera, M., García-Ventura, M. I. Balderas-López, J. A. & Chávez-Sandoval, B. E. (2024). Silver (AgNPs) and copper (CuSO4NPs) nanofluids, synthesis, characterization and them antimicrobial properties against pathogenic microorganisms. J. Bio.Innov, 13(2(a)): 17-28, 2024 |ISSN 2277-8330 (Electronic) https://doi.org/10.46344/JBINO.2023.v13i02(a).04.
Mielko, K. A., Jabłoński, S. J., Milczewska, J., Sands, D., Łukaszewicz, M., Młynarz, P. (2019). Metabolomic studies of Pseudomonas aeruginosa. World J Microbiol Biotechnol, November 7, 35(11):178. https://doi.org/10.1007/s11274-019-2739-1. PMID: 31701321; PMCID: PMC6838043.
Nie, P., Zhao, Y., Xu, H. (2023). Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: a review. Ecotoxicol Environ Saf, March 15, 253: 114636. https://doi.org/10.1016/j.ecoenv.2023.114636. Epub 2023 Feb 15. PMID: 36806822.
Reese, A. D., Keyloun, J. W., Garg, G., McLawhorn, M. M., Moffatt, L. T., Travis, T. E., Johnson, L. S., Shupp, J. W. (2022). Compounded cerium nitrate-silver sulfadiazine cream is safe and effective for the treatment of burn wounds: a burn center’s 4-year experience. J Burn Care Res, May 17, 43(3): 716-721. https://doi.org/10.1093/jbcr/irab180. PMID: 34543402; PMCID: PMC8499988.
Secretary of Health. (2015). Secetaría de Salud, México. https://www.gob.mx/salud.
Sulis, G., Sayood, S., Gandra, S. (2022). Antimicrobial resistance in low- and middle-income countries: current status and future directions. Expert Rev Anti Infect Ther, February, 20(2): 147-160. https://doi.org/10.1080/14787210.2021.1951705. Epub 2021 Jul 19. PMID: 34225545.
Tripathi, B. K., Srivastava, A. K. (2006). Diabetes mellitus: complications and therapeutics. Med Sci Monit. July, 12(7): RA130-47. Epub Jun 28. PMID: 16810145.
Yin, D., Guo, Y., Han, R., Yang, Y., Zhu, D., Hu, F. (2023). A modified Kirby-Bauer disc diffusion (mKB) method for accurately testing tigecycline susceptibility: a nation-wide multicenter comparative study. J Med Microbiol, August, 72(8). https://doi.org/ 10.1099/jmm.0.001671. PMID: 37552058.