The potential of Ag and Cu nanoparticles for the manufacture of photocatalytic coatings to mitigate the spread of COVID-19

Main Article Content

Fabricio Espejel Ayala
Yolanda Reyes Vidal
Myriam Solis López

Abstract

In this work, the use of photocatalytic and antimicrobial nanoparticles (NPs) is shown as an alternative to mitigate the virus SARS-CoV-2, which causes the COVID-19. The work is structured with emphasis in the mechanisms followed by Ag and Cu NPs to inactivate virus and bacteria. Furthermore, the preparation of materials, as zeolites, impregnated with NPs of Ag and Cu is presented. Also, the use of other type of NPs, like ZnO and TiO2 is treated, presenting high efficiency to inactivate microorganisms. Finally, the studies presenting the use of NPs supported or non-supported to prepare photocatalytic coatings are revised. These coatings were evaluated to degrade air pollutants; however, their use as antimicrobial agents is of high interest. Knowing the antimicrobial properties of NPs to remove microorganisms, their applications can be extended to inactive viruses, such as the SARS-CoV-2. This would encourage the use of these coatings in places presenting important outbreaks of COVID-19 and hospitals.

Downloads

Download data is not yet available.

Article Details

How to Cite
Espejel Ayala, F., Reyes Vidal, Y., & Solis López, M. (2021). The potential of Ag and Cu nanoparticles for the manufacture of photocatalytic coatings to mitigate the spread of COVID-19. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 14(27), 1e-12e. https://doi.org/10.22201/ceiich.24485691e.2021.27.69675
Section
Review articles

References

Allaker, R. P., Memarzadeh K. (2014). Nanoparticles and the control of oral infections. International Journal of Antimicrobial Agents, 43: 95-104. https://doi.org/10.1016/j.ijantimicag.2013.11.002 DOI: https://doi.org/10.1016/j.ijantimicag.2013.11.002

Alswat, A. A., Bin Ahmad M., Hussein M. Z., Ibrahim N. A., Saleh T. A. (2017). Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. Journal of Materials Science and Technology, 33: 880-896. https://doi.org/10.1016/j.jmst.2017.03.015 DOI: https://doi.org/10.1016/j.jmst.2017.03.015

Anpo, M., Shima T., Kodama S., Kubokawa Y. (1987). Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. The Journal of Physical Chemistry, 91(16): 4305-4310. https://doi.org/10.1021/j100300a021 DOI: https://doi.org/10.1021/j100300a021

Auchynnikava, A. A., Vorobyova A., Rzheussky S. E. (2015). Antimicrobial activity of copper nanoparticles depending on the particles size. En Physics, chemistry and application of nanostructures, 480-483. https://doi.org/10.1142/9789814696524_0118 DOI: https://doi.org/10.1142/9789814696524_0119

Azizi-Lalabadi, M., Ehsani A., Divband B., Alizadeh-Sani M. (2019). Antimicrobial activity of titanium dioxide and zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Scientific Reports, 9: 17439. https://doi.org/10.1038/s41598-019-54025-0 DOI: https://doi.org/10.1038/s41598-019-54025-0

Bleichert, P., Espírito Santo Ch., Hanczaruk M., Meyer H., Grass G. (2014). Inactivation of bacterial and viral biothreat agents on metallic copper surfaces. Biometals, 27: 1179-1189. https://doi.org/10.1007/s10534-014-9781-0 DOI: https://doi.org/10.1007/s10534-014-9781-0

Bright, K. R., Sicairos-Ruelas E. E., Gundy P. M., Gerba Ch. P. (2009). Assessment of the antiviral properties of zeolites containing metals ions. Food Environmental Virology, 1: 37-41. https://doi.org/10.1007/s12560-008-9006-1 DOI: https://doi.org/10.1007/s12560-008-9006-1

Chatterjee, A. K., Chakraborty R., Basu T. (2014). Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology, 25: 135101. https://doi.org/10.1088/0957-4484/25/13/135101 DOI: https://doi.org/10.1088/0957-4484/25/13/135101

Chuang, K-T., Abdullah H., Leu S-J., Cheng K-B., Kuo D-H., Chen H-Ch., Chien J-H., Hu W-T. (2017). Metal oxide composite thin films made by magnetron sputtering for bactericidal application. Journal of Photochemistry and Photobiology A: Chemistry, 337, 151-164. https://doi.org/10.1016/j.jphotochem.2017.01.012 DOI: https://doi.org/10.1016/j.jphotochem.2017.01.012

Copcia, V. E., Luchian C., Dunca S., Bilba N., Hristodor C. M. (2011). Antibacterial activity of silver-modified natural clinoptilolite. Journal of Materials Science, 46: 7121-7128. https://doi.org/10.1007/s10853-011-5635-0 DOI: https://doi.org/10.1007/s10853-011-5635-0

Coutino-González, E., Manriquez J., Robles I., Espejel-Ayala F. (2018). Synthesis of MCM-41 material from acid mud generated in the aluminum extraction of kaolinite mineral. Environmental Progress and Sustainable Energy, 38: 13069. https://doi.org/10.1002/ep.13069 DOI: https://doi.org/10.1002/ep.13069

Espejel-Ayala, F., Corella R. C., Pérez A. M., Pérez-Ramírez R., Ramírez-Zamora R. M. (2014). Carbon dioxide capture utilizing zeolites synthesized with paper sludge and scrap-glass. Waste Management, 32: 1219-1226.

https://doi.org/10.1177/0734242X14554643 DOI: https://doi.org/10.1177/0734242X14554643

Espejel-Ayala, F., Ramírez-Zamora R. M. (2015). Optimization of the synthesis process of zeolites with high cation Exchange capacity using copper in mine tailings as raw material. Environmental Progress and Sustainable Energy, 37: 996-1002. https://doi.org/10.1002/ep.12766 DOI: https://doi.org/10.1002/ep.12766

Grass, G., Rensing Ch., Solioz M. (2011). Metallic copper as an antimicrobial surface. Applied and Environmental Microbiology, 77: 1541-1547. https://doi.org/10.1128/AEM.02766-10 DOI: https://doi.org/10.1128/AEM.02766-10

Green, J. J. (2014). Antimicrobial copper alloys-group I and associated fabricated products. EPA Reg. No. 82012-1.

Hans, M., Mathews S., Mucklich F., Solioz M. (2016). Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases, 11: 018902. https://doi.org/10.1116/1.4935853 DOI: https://doi.org/10.1116/1.4935853

Hochmannova L., Vytrasova J. (2010). Photocatalytic and antimicrobial effects of interior paints. Progress in Organic Coatings, 67: 1-5. https://doi.org/10.1016/j.porgcoat.2009.09.016 DOI: https://doi.org/10.1016/j.porgcoat.2009.09.016

Hou, Y-X., Abdullah H., Kuo D-H., Leu S-J., Gultom N. S., Su Ch-H. (2018). A comparison study of SiO2/nano metal oxide composite sphere for antibacterial application. Composites, 133(15): 166-176. https://doi.org/10.1016/j.compositesb.2017.09.021 DOI: https://doi.org/10.1016/j.compositesb.2017.09.021

Imai, K., Ogawa H., Bui V. N., Inoue H., Fukuda J., Ohba M., Yamamoto Y., Nakamura K. (2012). Inactivation of high and low pathogenic avian influenza virus H5 subtypes by copper ions incorporated in zeolite-textile materials. Antiviral Research, 93: 225-233. https://doi.org/10.1016/j.antiviral.2011.11.017 DOI: https://doi.org/10.1016/j.antiviral.2011.11.017

Jang, H. D., Kim S. K. (2001). Controlled synthesis of titanium dioxide nanoparticles in a modified diffusion flame. Materials Research Bulletin, 36(3-4): 627-637. https://doi.org/10.1016/S0025-5408(01)00552-9 DOI: https://doi.org/10.1016/S0025-5408(01)00552-9

Jose, A., Devi K. R. S., Pinhero D., Narayana L. (2018). Electrochemical synthesis, photodegradation and antibacterial properties of PEG capped zinc oxide nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 187: 25-34. https://doi.org/10.1016/j.jphotobiol.2018.07.022 DOI: https://doi.org/10.1016/j.jphotobiol.2018.07.022

Kedziora, A., Trek W., Kepinski L., Bugla-Ploskonska G., Doroszkiewicz W. (2012). Synthesis and antibacterial activity of novel titanium dioxide doped with silver. Journal of Sol-Gel Science and Technology, 62: 79-86. https://doi.org/10.1007/s10971-012-2688-8 DOI: https://doi.org/10.1007/s10971-012-2688-8

Konieczny, J., Rdzawski Z. (2012). Antibacterial properties of copper and its alloys. Archives of Materials Science and Engineering, 56(2): 53-60.

Lázaro, A. L., Rodríguez-Valadez F., Machorro-López J. J., Espejel-Ayala F. (2020). SBA-15 synthesis from sodium silicate prepared with sand and sodium hydroxide. Materials Research Express, 7: 045503. https://doi.org/10.1088/2053-1591/ab83a5 DOI: https://doi.org/10.1088/2053-1591/ab83a5

Li, W-R., Sun T-S., Zhou Sh-L., Ma Y-K., Shi Q-Sh., Xie X-B., Huang X-M. (2017). A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against bacterial strains. International Biodeterioration and Biodegradation, 123: 304-310. https://doi.org/10.1016/j.ibiod.2017.07.015 DOI: https://doi.org/10.1016/j.ibiod.2017.07.015

Luo, J., Hein Ch., Mucklich F., Solioz M. (2017). Killing of bacteria by copper, cadmium and silver surfaces reveals relevant physicochemical parameters. Biointerphases, 12(2): 020301. https://doi.org/10.1116/1.4980127 DOI: https://doi.org/10.1116/1.4980127

Malato, S., Maldonado M. I., Fernández-Ibañez P., Oller I., Polo I., Sánchez-Moreno R. (2016). Decontamination and disinfection of water by solar photocatalysis: the pilot plants of the plataforma solar de Almeria. Materials Science in Semiconductor Processing, 42: 15-23. https://doi.org/10.1016/j.mssp.2015.07.017 DOI: https://doi.org/10.1016/j.mssp.2015.07.017

Nosrati, R., Olad A., Nofouzi K. (2015). A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO2/Ag-exchanged-zeolite A nanocomposite. Applied Surface Science, 346: 543-553. https://doi.org/10.1016/j.apsusc.2015.04.056 DOI: https://doi.org/10.1016/j.apsusc.2015.04.056

Ouay, L., Stellacci F. (2015). Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today, 10: 339-354. https://doi.org/10.1016/j.nantod.2015.04.002 DOI: https://doi.org/10.1016/j.nantod.2015.04.002

Ramsden, J. J. (2015). Photocatalytic antimicrobial coatings. Nanotechnology Perceptions, 11: 146-168. https://doi.org/10.4024/N12RA15A.ntp.15.03 DOI: https://doi.org/10.4024/N12RA15A.ntp.011.03

Reyes-Vidal, Y., Suarez-Rojas R., Ruiz C., Torres J., Talu S., Méndez A. Trejo G. (2015). Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings. Applied Surface Science. 342(1): 34-41. https://doi.org/10.1016/j.apsusc.2015.03.037 DOI: https://doi.org/10.1016/j.apsusc.2015.03.037

Sánchez-Ruíz, A., Robles-Gutiérrez I., Espejel-Ayala F. (2018). Preparation of zeolitic material using natural clinoptilolite for CO2 capture. Revista Mexicana de Ingeniería Química, 17: 573-585. https://doi.org/10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Sanchez DOI: https://doi.org/10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Sanchez

Shut, V. N., Mozzharov S. E. (2017). Properties of ultrafine copper-containing powders prepared by a sonoelectrochemical method. Inorganic Materials, 53: 883-889. https://doi.org/10.1134/S0020168517080155 DOI: https://doi.org/10.1134/S0020168517080155

Skorb, E. V., Antonouskaya L. I., Belyasova N. A., Shchukin D. G., Mohwald H., Sviridov D. V. (2008). Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2:In2O3 nancomposite. Applied Catalysis B, 84: 94-99. https://doi.org/10.1016/j.apcatb.2008.03.007 DOI: https://doi.org/10.1016/j.apcatb.2008.03.007

Wu, Z-Y., Abdullah H., Ku D. (2018). Photocatalytic antibacterial activity of copper-based nanoparticles under visible light illumination. Journal of Physics: Conferences Series, 1007. 012062. https://doi.org/10.1088/1742-6596/1007/1/012062 DOI: https://doi.org/10.1088/1742-6596/1007/1/012062

Zakharova, O. V., Godymchuk A. Y., Gusev A. A., Gulchenko S. I., Vasyukova I. A., Kuznetsov D.V. (2015). Considerable variation of antibacterial activity of Cu nanoparticles suspensions depending on the storage time, dispersive medium, and particles sizes. Biomedical Research International, 2015: 41530. https://doi.org/10.1155/2015/412530 DOI: https://doi.org/10.1155/2015/412530

Zuccheri, T., Colonna M., Stefanini I., Santini C., Di Gioia D. (2013). Bactericidal activity of aqueous acrylic paint dispersion for wooden substrates based on TiO2 nanoparticles activated by fluorescent light. Materials, 6(8): 3270-3283. https://doi.org/10.3390/ma608327 DOI: https://doi.org/10.3390/ma6083270