Transmission electron microscopy to look at atoms: principles and development

Main Article Content

Héctor A. Calderón

Abstract

Electron microscopy is an important tool in characterizing nanomaterials. In its highresolution mode, it is possible to obtain images of the columns of atoms that make up a sample or if the thickness is a monolayer, images of atoms can be obtained. Normally the product image has specific intensities that require proper interpretation, there is a need to consider the electron beam interaction with the simple. In this work, some important characteristics of high resolution and atomic resolution electron microscopy are described. Examples are given with observations in different materials. The beam–sample interaction is given special attention in order to avoid sample damage by an intense beam.

Downloads

Download data is not yet available.

Article Details

How to Cite
Calderón, H. A. (2020). Transmission electron microscopy to look at atoms: principles and development. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 13(25), 133–156. https://doi.org/10.22201/ceiich.24485691e.2020.25.69649
Section
Review articles

References

Barton, B. Jiang, C. Y. Song, Petra Specht, H. A. Calderon y C. Kisielowski. (2012). Microscopy and Microanalysis, 18 (05): 982-994. https://doi.org/10.1017/S1431927612001213

Gerchberg, R. W., W. O. Saxton. (1972). Optik, 35: 237.

Haider, M., H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban. (1998). Ultramicroscopy, 75: 53-60. https://doi.org/10.1016/S0304-3991(98)00048-5

Hsieh, W. K., Hsieh, F.-R. Chen, J.-J. Kai, A.I Kirkland. (2004). Ultramicroscopy, 98: 99. https://doi.org/10.1016/j.ultramic.2003.08.004

Kilaas, R. Software package. https://www.totalresolution.com

Kisielowski, C. H. Frei, I. D. Sharp, J. A. Haber, S. Helveg (2016). Adv. Struct. Chem. Imaging, 2: 13. https://doi.org/10.1186/s40679-016-0027-9

Kisielowski, C., C. J. D. Hetherington, Y. C. Wang, R. Kilaas, M. A. O’Keefe, A. Thust. (2001). Ultramicroscopy, 89: 243-263. https://doi.org/10.1016/S0304-3991(01)00090-0

Lichte, H., M. Lehman. (2008). Rep. Prog. Phys. 71: 016102. https://doi.org/10.1088/0034-4885/71/1/016102

Lichte, H. (1991). Ultramicroscopy, 38(13). https://doi.org/10.1016/0304-3991(91) 90105-F

Mobus, G., F. Phillipp, T. Gemming, R. Schweinfest, M. Ruhle. (1997). J. Electron Microscopy, 46: 381-395. https://doi.org/10.1093/oxfordjournals.jmicro.a023534

Nellist, P. D. y S. J. Pennycook. (1998). Phys. Rev. Lett., 81: 4156. https://doi.org/10.1103/PhysRevLett.81.4156

Pennycook, S. J., Varela, M., Hetherington, C. J. D. y Kirkland, A. I. (2006). Materials advances through aberration- corrected electron microscopy. MRS Bulletin, 31: 36-43. http://dx.doi.org/10.1557/mrs2006.4

Press Release. The Nobel Prize in Physics 1986. The Royal Swedish Academy of Sciences. Octubre 15, 1986.

Ramírez-Rave, S., A. Hernández-Gordillo, H. A. Calderón, A. Galano, C. García-Mendoza y R. Gómez. (2015). New Journal of Chemistry, 39: 2188-2194. https://doi.org/10.1039/C4NJ01891E

Tiemeijer, P. C., M. Bischoff, B. Freitag, C. Kisielowski. (2012). Ultramicroscopy, 118: 35-43. https://doi.org/10.1016/j.ultramic.2012.03.019

Yoo, H.-D. , Y. Liang, Y. Li, H. A. Calderón, F. Robles, S. Jing, L. C. Grabow y Y. Yao. (2015). Nano Letters, 15: 2194-2202. https://doi.org/10.1021/acs.nanolett.5b00388