Biosynthesis and characterization of nanostructures by electron microscopy
Main Article Content
Abstract
The methods to obtain nanostructures have been a fundamental area of study since the beginning of the nanotechnology. The biosynthesis of nanostructures is inspired by the behavior that some microorganisms and plants have for subsisting in environments with chemical stress. This paper presents novel results achieved by our research group to generate Au and Ag nanostructures with tunable morphology, assisted by Camellia sinensis and Anemopsis californica extracts as reducing agents of Au+3 and Ag+1 ions; as well as magnetite nanoparticles (Fe2O3) biosynthesis with size homogeneity and better phase control than other biogenic methods reported in the literature. Additionally, the effective use of biotemplates to design nanostructured materials with green synthesis methods is demonstrated. Finally, the evidence of the nanomaterials obtained by biosynthesis was shown via characterization with Transmission Electron Microscopy, Scanning Electron Microscopy and X-ray Energy Dispersion Spectroscopy.
Article Details
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
References
Bhattacharya, D. y Gupta, R. K. (2005). Nanotechnology and potential of microorganisms. Critical Reviews in Biotechnology. https://doi.org/10.1080/07388550500361994
Castro–Longoria, E., Vilchis-Nestor, A. R. y Avalos-Borja, M. (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids and Surfaces B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2010.10.035
Del-Toro-Sánchez, C. L. et al. (2015). Storage effect on phenols and on the antioxidant activity of extracts from Anemopsis californica and inhibition of elastase enzyme. Journal of Chemistry. https://doi.org/10.1155/2015/602136
Gardea-Torresdey, J. L. et al. (2003). Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir. https://doi.org/10.1021/la020835i
Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry. https://doi.org/10.1039/c1gc15386b
Kelly, K. L. et al. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B. https://doi.org/ 10.1021/jp026731y
Kumar, V. y Yadav, S. K. (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology. https://doi.org/10.1002/jctb.2023
Loo, Y. Y., Chieng B. W., Nishibuchi M. y Radu S. (2012). Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. International Journal of Nanomedicine. https://doi.org/10.2147/IJN.S33344
López, G. et al. (2013). Nanoestructuras metálicas; síntesis, caracterización y aplicaciones. Libro de Editorial Reverté, Universidad Autónoma del Estado de México, 1-50.
Medina, A. L. et al. (2005) Composition and antimicrobial activity of Anemopsis californica leaf oil. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf0511244
Mohanpuria, P., Rana, N. K. y Yadav, S. K. (2008). Biosynthesis of nanoparticles: Technological concepts and future applications. Journal of Nanoparticle Research, 10(3): 507–517. https://doi.org/10.1007/s11051-007-9275-x
Pileni, M. P. (2007). Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains. Journal of Physical Chemistry C. https://doi.org/10.1021/jp070646e
Quester, K., Avalos-Borja, M. y Castro-Longoria, E. (2013). Biosynthesis and microscopic study of metallic nanoparticles. Micron. https://doi.org/10.1016/j.micron.2013.07.003
Rababah, T. M., Hettiarachchy, N. S. y Horax, R. (2004). Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf049645z
Sajanlal, P. R. et al. (2011). Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Reviews. https://doi.org/10.3402/nano.v2i0.5883
Sánchez-Mendieta, V. y Rafael, A. (2012). Green Synthesis of Noble Metal (Au, Ag, Pt) Nanoparticles, Assisted by Plant-Extracts. Noble Metals. https://doi.org/10.5772/34335
Sau, T. K. y Rogach, A. L. (2010). Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Advanced Materials. https://doi.org/10.1002/adma.200901271
Schmid, G. (1992). Large clusters and colloids. Metals in the embryonic state Chem Rev. https://doi.org/10.1002/9783527616077
Scott, R. J. (1994). Pollen exine-the sporopollenin enigma and the physics of pattern. Seminar series-society for experimental biology. Cambridge University Press, 49.
Shebanova, O. N. y Lazor, P. (2003). Raman study of magnetite (Fe3O4): laser induced thermal effects and oxidation. Journal of Raman Spectroscopy. Wiley Online Library, 34(11): 845-852. https://doi.org/10.1002/jrs.1056
Silva-De Hoyos, L. E. et al. (2019). Plasmonic sensing of aqueous-divalent metal ions by biogenic gold nanoparticles. Journal of Nanomaterials. https://doi.org/10.1155/2019/9846729
Vilchis-Néstor, A. R. et al. (2008). Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Letters, 62(17-18): 3103-3105. https://doi.org/10.1016/j.matlet.2008.01.138
Xia, Y. et al. (2013). Shape–controlled synthesis of metal nanocrystals. MRS Bulletin. https://doi.org/10.1557/mrs.2013.84
Yoosaf, K. Binil Itty Ipe, Cherumuttathu H. Suresh, K. George Thomas. (2007). In situ synthesis of metal nanoparticles and selective naked–eye detection of lead ions from aqueous media. Journal of Physical Chemistry C. https://doi.org/10.1021/jp073923q