Production of renewable fuels
Main Article Content
Abstract
This article reviews production of biofuels from the point of view of catalysis. It describes existing types of biofuels and analyses the need for them. For the four major biofuels: bioethanol, biodiesel, green diesel and bio-oil, the form of production and type of catalyst used in their production are described.
Downloads
Article Details
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
References
Afshar Taromi, A. y Kaliaguine, S. (2018). Green diesel production via continuous hydrotreatment of triglycerides over mesostructured γ-alumina supported NiMo/Co Mo catalysts. Fuel Process. Technol., 171: 20-30. https://doi.org/10.1016/J.FUPROC.2017.10.024
Alonso-Ramírez, G., Cuevas-García, R., Sánchez-Minero, F., Ramírez, J., Moreno-Montiel, M., Ancheyta, J. y Carbajal-Vielman, R. (2019). Catalytic hydrocracking of a Mexican heavy oil on a MoS2/Al2O3 catalyst: I. Study of the transformation of isolated saturates fraction obtained from SARA analysis. Catal. Today, (julio): 1-10. https://doi.org/10.1016/j.cattod.2019.07.031
Anand, V., Gautam, R. y Vinu, R. (2017). Non-catalytic and catalytic fast pyrolysis of Schizochytrium limacinum microalga. Fuel, 205: 1-10. https://doi.org/10.1016/j.fuel.2017.05.049
Aransiola, E. F., Ojumu, T. V., Oyekola, O. O., Madzimbamuto, T. F. y Ikhu-Omoregbe, D. I. O. (2014). A review of current technology for biodiesel production: State of the art. Biomass Bioenergy, 61: 276-297. https://doi.org/10.1016/j.biombioe.2013.11.014
Atabani, A. E., Silitonga, A. S., Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., Badruddin, I. A. y Fayaz, H. (2013). Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sust. Energ. Rev., 18: 211-245. https://doi.org/10.1016/j.rser.2012.10.013
Azizi, K., Moraveji, M. K., y Najafabadi, H. A. (2018). A review on bio-fuels production from microalgal biomass by using pyrolysis method. Renew. Sust. Energ. Rev., 82: 3046-3059. https://doi.org/10.1016/j.rser.2017.10.033
Babich, I.V., Van derHulst, M., Lefferts, L., Moulijn, J. A., O’Connor, P., y Seshan, K. (2011) Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy, 35: 3199-207. http://dx.doi.org/10.1016/j.biombioe.2011.04.043
Bacha, J., Freel, J., Gibbs, A., Gibbs, L., Hemighaus, G., Hoekman, K., Mills, J. (2007). Diesel fuels technical review. Chevron Global Marketing, 1-116. https://doi.org/10.1063/1.3575169
Bello-Zakari, B. (2015). Hydroprocessing microalgae derived hydrothermal liquefaction bio-crude for middle distillate fuels production- a review. NIJOTECH., 134(4): 737-749. http://dx.doi.org/10.4314/njt.v34i4.11
Bonelli, B., Cozzolino, M., Tesser, R., Di Serio, M., Piumetti, M., Garrone, E., y Santacesaria, E. (2007). Study of the surface acidity of TiO2/SiO2 catalysts by means of FTIR measurements of CO and NH3 adsorption. J. Catal., 246(2): 293-300. https://doi.org/10.1016/J.JCAT.2006.12.015
Bosma, R. de Vree, J. H., Slegers, P. M., Janssen, M., Wijiffels, R. H., y Barbosa, M. J. (2014). Design and constrution of the microalgal pilot facility AlgaePARC. Algal Res., 6(B): 160-169. https://doi.org/10.1016/j.algal.2014.10.006
Brennan, L., y Owende, P. (2010). Biofuels from microalgae- A review of technology for production, processing and extractions of biofuels and co-products. Renew. Sust. Energ. Rev., 14(2): 557-577. https://doi.org/10.1016/j.rser.2009.10.009
Busic, A., Mardetko, N., Kundas, S., Morzak, G., Belskaya, H., Ivancic Santek, M., Komes, D., Novak, S., y Santek, B. (2018). Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technol. Biotechnol., 56(3): 289-311. https://doi:10.17113/ftb.56.03.18.5546
Cabrera Munguia, D. A., Tzompantzi, F., Gutiérrez-Alejandre, A., Rico, J. L., y González, H. (2017). ZnAl-Zr hydrotalcite-like compounds activated at low temperature as solid base catalyst for the transesterification of vegetable oils. Energy Procedia, 142: 582-589. https://doi.org/10.1016/j.egypro.2017.12.097
Cantrell, K. B., Ducey, T., Ro, K. S., y Hunt, P. G. (2008). Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol., 99(17): 7941-7953. https://doi.org/10.1016/j.biortech.2008.02.061
Carlos, R. M., y Ba Khang, D. (2008). Characterization of biomass energy projects in Southeast Asia. Biomass Bioenergy, 32(6): 525-532. https://doi.org/10.1016/J.BIOMBIOE.2007.11.005
Cavani, F., Trifirò, F., y Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparations, properties and applications. Catal. Today, 11: 173-301. https://doi.org/10.1016/0920-5861(91)80068-K
Cheng, F., Cui, Z., Chen, L., Jarvis, J., Paz, N., Schaub, T., Nirmalakhandan, N., y Brewer, C. E. (2017). Hydrothermal liquefaction of high-and low lipid algae: bio-crude oil chemistry. Appl. Energy, 206: 278-292. https://doi.org/10.1016/j.apenergy.2017.08.105
Cheng, J., Li, T., Huang, R., Zhou, J., y Cen, K. (2014). Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality. Bioresour. Techno., 158: 378-382. https://doi.org/10.1016/j.biortech.2014.02.112
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv., 25(3): 294-306. https://doi.org/10.1016/J.BIOTECHADV.2007.02.001
Chiaramonti, D., Prussi, M., Buffi, M. y Tacconi, D. (2014). Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels. Appl. Energy., 136: 767-774. https://doi.org/10.1016/j.apenergy.2014.08.065
Coelho, A., Perrone, O. M., Gomes, E., Da-Silva, R., Thoméo, J. C., y Boscolo, M. (2017). Mixed metal oxides from sucrose and cornstarch templated hydrotalcite-like LDHs as catalysts for ethyl biodiesel synthesis. Appl. Catal. A.-G., 532: 32-39. https://doi.org/10.1016/j.apcata.2016.12.012
Crews, K., Reeves, C., Thomas, P., Abugri, D., Russell, A. y Curry, M. L. (2014). Heterogeneous Catalysis of C–O bond cleavage for cellulose deconstruction: A potential pathway for ethanol production. ISRN Nanotechnology, 2014: 8. https://doi.org/http://dx.doi.org/10.1155/2014/634679
De Jong, S., Antonissen, K., Hoefnagels R., Lonza L., Wang M., Faaij A. y Junginger M. (2017). Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnol. Biofuels, 10(64): 1-18. https://doi.org/10.1186/s13068-017-0739-7
De Rezende, S. M., De Castro Reis, M., Reid, M. G., Lúcio Silva, P., Coutinho, F. M. B., Da Silva San Gil, R. A., y Lachter, E. R. (2008). Transesterification of vegetable oils promoted by poly(styrene-divinylbenzene) and poly(divinylbenzene). Appl. Catal. A.-G., 349(1-2): 198-203. https://doi.org/10.1016/J.APCATA.2008.07.030
Deng, X., Fang, Z., Liu, Y. H., y Yu C. L. (2011). Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy, 36(2): 777-784. https://doi.org/10.1016/j.energy.2010.12.043
Demirbas, A. (2000). Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management, 41(6), 633-646. https://doi.org/10.1016/S0196-8904(99)00130-2
Díaz-Pérez, M. A. y Serrano-Ruiz, J. C. (2020). Catalytic production of jet fuels from biomass. Molecules, 25(4): 802. https://doi.org/10.3390/molecules25040802
Duan, P., y Savage, P. E. (2011). Hydrothermal liquefaction of a microalgae with heterogeneous catalyst. Ind. Eng. Chem. Res., 50: 52-61. https://doi.org/10.1021/ie100758s
Dunkan, J. (2003). Cost of biodiesel production. http://www.globalbioenergy.org/uploads/media/0305_Duncan_-_Cost-of-biodiesel-roduction.pdf
Eglof, G. (1938). Motor fuel economy of Europe. Industrial and Engineering Chemistry, 30(10): 1091-1104.
Elliot, D.C, Biller, P., Ross, A. B., Schmidt, A. J. y Jones, S. B. (2015). Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour. Technol., 178:147-56. https://doi.org/10.1016/j.biortech.2014.09.132
Fan, M., Liu, Y., Zhang, P., y Jiang, P. (2016). Blocky shapes Ca-Mg mixed oxides as a water-resistant catalyst for effective synthesis of biodiesel by transesterification. Fuel Process. Technol., 149: 163-168. https://doi.org/10.1016/j.fuproc.2016.03.029
Ferrari, L. (2013). Energías fósiles: diagnóstico, perspectivas e implicaciones económicas. Revista Mexicana de Física, 59(2): 36-43. (Consultado: 18 de enero, 2020) ISSN: 0035-001X. https://www.redalyc.org/articulo.oa?id=570/57030971005
Fortier, M. O., Roberts, G. W., Stagg-Williams, S. M., y Sturm, B. M. (2014). Life cycle assessment of bio-jet from hydrothermal liquefaction of microalgae. Appl. Energy, 122: 73-82. https://doi.org/10.1016/j.apenergy.2014.01.077
Ganduglia, F., León, J., Gasparini, R., Rodríguez, M., Huarte, G., Estrada, J., y Filgueiras, E. (2009). Manual de biocombustibles. 230 pp. https://doi.org/ISBN13: 978-92-9248-121-6
García, A. L., Torri, C., Samorí, C., van der Spek, J., Fabbri, D., Sascha, R. A. K., y Frederick Brilman, D. W. (2012). Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuels, 26(1): 642-57. https://doi.org/10.1021/ef201415s
Garibay Hernández, A., Vázquez-Duhalt, R., del Pilar Sánchez Saavedra, M., Serrano Carreón, L., y Martínez Jiménez, A. (2009). Biodiesel a partir de microalgas. Sociedad Mexicana de Biotecnología y Bioingeniería, 13: 38-61.
Gollakota, A. R. K., Kishore, N., y Gu, S. (2018). A review on hydrothermal liquefaction of biomass. Renew. Sust. Energ. Rev., 81(part 1): 1378-92. https://doi.org/10.1016/j.rser.2017.05.178
González-Gálvez, O. D., Cuevas-García, R., Nava Bravo, I., Velasquez-Orta, S. B., Harvey, A., y Orta Ledesma, M.A. (2020). Bio-oil production by catalytic solvent liquefaction from a wild microalgae consortium. Aceptado para su publicación en Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00716-y
Gumina, B., Espro, C., Galvagno, S., Pietropaolo, R., y Mauriello, F. (2019). Bioethanol production from unpretreated cellulose under neutral selfsustainable hydrolysis/hydrogenolysis conditions promoted by the heterogeneous Pd/Fe3O4 catalyst. ACS Omega, 4: 352-357. https://doi.org/10.1021/acsomega.8b03088
Gutiérrez-Antonio, C., Gómez-Castro F. I., de Lira-Flores, J. A., Hernández S. (2017). A review on the production processes of renewable jet fuel. Renew. Sust. Energ. Rev., 79: 709-729. https://doi.org/10.1016/j.rser.2017.05.108
Hájek, M., Kocík, J., Frolich, K., y Vávra, A. (2017). Mg-Fe mixed oxides and their rehydrated mixed oxides as catalysts for transesterification. J. Clean. Prod., 161: 1423-1431. https://doi.org/10.1016/j.jclepro.2017.05.199
Hájek, M., Kutálek, P., Smoláková, L., Troppová, I., Čapek, L., Kubička, D., Kocík J., y Thanh, D.N. (2015). Transesterification of rapeseed oil by Mg-Al mixed oxides with various Mg/Al molar ratio. Chem. Eng. J., 263: 160-167. https://doi.org/10.1016/j.cej.2014.11.006
Hirano, A., Hon-Nami, K., Kunito, S., Hada, M. y Ogushi, Y. (1998). Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal. Today, 45(1-4): 399-404. https://doi.org/10.1016/S0920-5861(98)00275-2
Hossain, N., Zaini, J., Mahlia, T. M. I. y Azad, A. K. (2019). Elemental, morphological and thermal analysis of mixed microalga species from drain water. Renew. Energy, 131: 617-624. https://doi.org/10.1016/j.renene.2018.07.082
Hossain, N., y Morni, N.A.H. (2019). Co-pelletization of microalgae-sewage sludge blend with sub-bituminous coal as solid fuel feedstock. Bioenergy Res., 1: 1-12. DOI:10.1007/s12155-019-10061-2
Hu, Y., Gong, M., Feng, S., Xu (Charles), C. y Bassi, A. (2019). A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production. Renew. Sust. Energ. Rev., 101: 476-492. https://doi.org/10.1016/j.rser.2018.11.037
Huber, G. W., O’Connor, P. y Corma, A. (2007). Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl. Catal. A.-G., 329: 120-129. https://doi.org/10.1016/j.apcata.2007.07.002
IEA. (2017). Key world energy statistics. International Energy Agency, Secure, Sustainable Together, 97. (Consultado: 15 de enero, 2020). http://svenskvindenergi.org/wp-content/uploads/2017/12/KeyWorld2017.pdf
ISI Andina. (2020). ISI Andina, Ingeniería y Construcción. (Consultado: 5 febrero, 2020). https://www.isiven.com/costos-de-produccion-de-crudo
Jena, U., Das, K.C. y Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour. Technol., 102: 6221-6229. https://doi.org/10.1016/j.biortech.2011.02.057
Kunkes, E. L., Simonetti, D. A., West, R. M., Serrano-Ruiz, J. C., Gärtner, C. A. y Dumesic, J. A. (2008). Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 322, (5900): 417-421. https://doi.org/10.1126/science.1159210
Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E. y Lycourghiotis, A. (2016). Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: A critical review. Appl. Catal. B., 181: 156-196. https://doi.org/10.1016/j.apcatb.2015.07.042
Kumar, S. A. A., Sakthinathan, G., Vignesh, R., Banu, J. R. y Al-Muhtaseb, H. (2019). Optimized transesterification reaction for efficient biodiesel production using Indian oil sardine fish as feedstock. Fuel, 253: 921-929. https://doi.org/10.1016/j.fuel.2019.04.172
Liu, G., Yan, B., y Chen, G., 2013. Technical review on jet production. Renew. Sust. Energ. Rev., 25: 59-70. https://doi.org/10.1016/j.rser.2013.03.025
Liu, C., Liu, J., Zhou, G., Tian, W., y Rong, L. (2013). A cleaner process for hydrocracking of jatropha oil into green diesel. J. TAIWAN INST. CHEM. E., 44(2): 221-227. https://doi.org/10.1016/J.JTICE.2012.10.006
Liu, S., Zhu, Q., Guan, Q., He, L. y Li, W. (2015). Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresour. Technol., 183: 93-100. https://doi.org/10.1016/j.biortech.2015.02.056
López, D. E., Goodwin, J.G., Bruce, D. A., y Lotero, E. (2005). Transesterification of triacetin with methanol on solid acid and base catalysts. Appl. Catal. A.-G., 295(2): 97-105. https://doi.org/10.1016/J.APCATA.2005.07.055
Lotero, E., Goodwin, Y. G., Bruce, D., Suwannakaran, K., Liu Y. y Lopez, D. E. (2006). The catalysis of biodiesel synthesis. En J. J. Spivey y K. M. Dooley (eds.), Royal Society of Chemistry, Catalysis, 19: 41-84.
Mabee, W. E., Gregg, D. J. y Saddler, J. N. (2005). Assessing the emerging biorefinery sector in Canada. En B. H. Davison, B. R. Evans, M. Finkelstein y J. McMillan (eds.), Appl. Biochem. Biotechnol., 1a ed., vol. (121-124): 765-778). https://doi.org/https://doi.org/10.1007/978-1-59259-991-2_64
Makarfi Isa, Y. y Tinashe Ganda, E. (2018). Bio-oil as a potential source of petroleum range fuels. Renew. Sust. Energ. Rev., 81(1): 69-75. https://doi.org/10.1016/j.rser.2017.07.036
Mo, X., Lotero, E., Lu, C., Liu, Y. y Goodwin, J.G. (2008). A novel sulfonated carbon composite solid acid catalyst for biodiesel synthesis. Catal. Lett., 123(1-2): 1-6. https://doi.org/10.1007/s10562-008-9456-y
Monavari, S., Galba, M. y Zacchi, G. (2011). Influence of impregnation with lactic acid on sugar yields from steam pretreatment of sugarcane bagasse and spruce, for bioethanol production. Biomass Bioenergy, 35(7): 3115-3122. https://doi.org/10.1016/j.biombioe.2011.04.016
Naik, S. N., Goud, V. V., Rout, P. K. y Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renew. Sust. Energ. Rev., 14(2): 578-597. https://doi.org/10.1016/J.RSER.2009.10.003
Nava Bravo, I., Velásquez-Orta, S.B., Cuevas-García, R., Monje-Ramírez, I., Harvey, A., y Orta Ledesma, M. T. (2019). Bio-crude oil production using catalytic hydrothermal liquefaction (HTL) from native microalgae harvested by ozone-flotation. Fuel, 241: 255-263. https://doi.org/10.1016/J.FUEL.2018.12.071
Onda, A., Ochi, T., y Yanagisawa K. (2008). Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem., 10: 1033-1037. https://doi.org/10.1039/b808471h
Olcay, H., Subrahmanyam, A. V., Xing, R., Lajoie, J., Dumesic, J. A. y Huber, G. W. (2013). Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams. Energy Environ. Sci., 6: 205-216. https://doi.org/10.1039/C2EE23316A
Peters, M., Taylor, J., Gevo, Inc. (2011). Renewable jet fuel blendstock from isobutanol. International Patent WO. 2011140560, noviembre 10.
Primus, C. K. (2015). Design and development of mild combustion. (Consultado: 2 de febrero, 2020). https://www.researchgate.net/publication/285131475_DESIGN_AND_DEVELOPMENT_OF_MILD_COMBUSTION
Raman, J. K. y Gnansounou, E. (2017). Life cycle assessment of vetiver-based biorefinery with production of bioethanol and furfural. Life-Cycle Assessment of Biorefineries, 147-165. https://doi.org/10.1016/B978-0-444-63585-3.00005-X
Rawat, I., Kumar, R. R., Mutanda, T. y Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy, 103: 444-467. https://doi.org/10.1016/j.apenergy.2012.10.004
Renovetec. (2013). Plantas de biomasa. (Consultado: 29 de enero, 2020). http://www.plantasdebiomasa.net/bioetan.html#top
Ross, A. B., Biller, P., Kubacki, M. L., Li, H., Lea-Langton, A. y Jones, J. M. (2010). Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 89 (9): 2234-2243. https://doi.org/10.1016/j.fuel.2010.01.025
Rubio-Arroyo, M. F., Vicanco-Loyo, P., Juárez, M., Poisot, M. y Ramírez-Galicia, G. (2011). Bio-ethanol obtained by fermentation process with continuous feeding of yeast. J. MEX. CHEM. SOC., 55(4): 242-245. (Consultado: 5 de febrero del 2020) ISSN 1870-249X. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-249X2011000400010&lng=es&tlng=en
Sajjadi, B., Chen, W.-Y., Raman, A. A. A. y Ibrahim, S. (2018). Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew. Sust. Energ. Rev., 97: 200-232. https://doi.org/10.1016/j.rser.2018.07.050
Sanna, A. (2014). Advanced biofuels from thermochemical processing of sustainable biomass in Europe. Bioenergy Res., 7 (1): 36-47. https://doi.org/10.1007/s12155-013-9378-4
Serio, M. Di, Tesser, R., Pengmei, L., y Santacesaria, E. (2008). Heterogeneous catalysts for biodiesel production. Energy Fuels, 22(9): 207-217. https://doi.org/10.1021/ef700250g
Shah, Z., Veses, R. C., Vaghetti, J. C. P., Amorim, V. D. A. y Da Silva, R. (2019). Preparation of jet engine range fuel from biomass pyrolysis oil through hydrogenation and its comparison with aviation kerosene. Int. J. Green Energy., 16(4): 350-360. https://doi.org/10.1080/15435075.2019.1566730
Sinha, A. K., Sibi, M. G., Naidu, N., Farooqui, S. A., Anand, M., y Kumar, R. (2014). Process intensification for hydroprocessing of vegetable oils: experimental study. Ind. Eng. Chem. Res., 53(49): 19062-19070. https://doi.org/10.1021/ie502703z
Singh, R., Balagurumurthy, B., y Bhaskar, T. (2015). Hydrothermal liquefaction of macro algae: effect of feedstock composition. Fuel, 146 :69-74. https://doi.org/10.1016/j.fuel.2015.01.018
Srifa, A., Faungnawakij, K., Itthibenchapong, V. y Assabumrungrat, S. (2015). Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel. Chem. Eng. J., 278: 249-258. https://doi.org/10.1016/j.cej.2014.09.106
Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S. y Hara M. (2010). Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci., 12: 1029-1034. https://doi.org/10.1016/j.solidstatesciences.2010.02.038
Suresh, S. K., Suresh, P. V. y Kudre, T. G. (2019). 4-Prospective ecofuel feedstocks for sustainable production. En Azad, K. (ed.), Advances in Eco-Fuels for a Sustainable Environment. Woodhead Publishing Series in Energy, 89-117. https://doi.org/10.1016/B978-0-08-102728-8.00004-8
Takagaki, A., Tagusagawa, C. y Domen, K. (2008). Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst. Chem. Commun., 42: 5363-5365. https://doi.org/10.1039/b810346a
Tan, I. S., Lam, M. K., y Lee K. T. (2013). Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. Carbohydr. Polym., 94(1): 561-566. https://doi.org/10.1016/j.carbpol.2013.01.042
Taylor, J. D., Jenni, M. M. y Peters, M. W. (2010). Dehydration of fermented isobutanol to produce renewable chemicals and fuels. Top. Catal., 53:1224-1230. https://doi.org/10.1007/s11244-010-9567-8
Tian, C., Li, B., Liu, Z., Zhang, Y. y Lu H. (2014). Hydrothermal liquefaction for algal biorefinery: A critical review. Renew. Sust. Energ. Rev., 38: 933-950. https://doi.org/10.1016/j.rser.2014.07.030
Trakarnpruk, W. y Porntangjitlikit, S. (2008). Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties. Renew. Energy, 33(7): 1558-1563. https://doi.org/10.1016/j.renene.2007.08.003
Verma, D., Rana, B. S., Kumar, R., Sibi, M. G. y Sinha, A. K. (2015). Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11. Appl. Catal. A: Gen., 490: 108-116. https://doi.org/10.1016/j.apcata.2014.11.007
Virent Bio Forming, (2020). (Consultado: 1 junio, 2020). https://www.virent.com/technology/bioforming
Vo, T. K., Lee, O. K., Lee, E. Y., Kim C. H., Seo J. W., Kim J. y Kim S. S. (2016). Kinetics study of the hydrothermal liquefaction of the microalga Aurantiochytrium sp. KRS101. Chem. Eng. J., 306: 763-771. https://doi.org/10.1016/j.cej.2016.07.104
Xu, D., Lin, G., Guo, S., Wang, S., Guo, Y., y Jing, Z. (2018). Catalytic hydrothermal of algae and upgrading of biocrude: A critical review. Renew. Sust. Energ. Rev., 97: 103-118. https://doi.org/10.1016/j.rser.2018.08.042
Xu, Y., Zheng, X., Yu, H. y Hu, X. (2014). Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Bioresour. Technol., 156: 1-5. https://doi.org/10.1016/j.biortech.2014.01.010
Wang, B., Li, Y., Wu, N. y Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechol., 79(5): 707-718. https://doi.org/10.1007/s00253-008-1518-y
Wang, W. C. y Tao, L. (2016). Bio-jet fuel conversion technologies. Renew. Sust. Energ. Rev., 53: 801-822. https://doi.org/10.1016/j.rser.2015.09.016
Yang, Y., Luo, H., Tong, G., Smith, K. J. y Tye, C. T. (2008). Hydrodeoxygenation of phenolic model compounds over MoS2 catalysts with different structures. Chin. J. Chem. Eng., 16(5): 733-739. https://doi.org/10.1016/S1004-9541(08)60148-2
Zhan, N., Hu Y., Li, H., Yu, D., Han, Y., Huang, H. (2010). Lanthanum-phosphorous modified HZSM-5 catalysts in dehydration of ethanol to ethylene: A comparative analysis. Catal. Commun., 11(7): 633-637. https://doi.org/10.1016/j.catcom.2010.01.011
Zhang, J., Chen, S., Yang, R. y Yan, Y. (2010). Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel, 89(10): 2939-2944. https://doi.org/10.1016/J.FUEL.2010.05.009
Zhang, X1, Lei, H., Zhu, L., Wei, Y., Liu, Y., Yadavalli, G., Yan, D., Wu, J. y Chen S. (2015). Production of renewable jet fuel range alkanes and aromatics via integrated catalytic processes of intact biomass. Fuel, 160:375-385. https://doi.org/10.1016/j.fuel.2015.08.006