Nanostructured oxides of transition metals with applications in catalysis

Main Article Content

Nancy Martín Guaregua
https://orcid.org/0000-0003-0675-3743
Margarita Viniegra
https://orcid.org/0000-0003-1754-3645
Rubicelia Vargas
https://orcid.org/0000-0003-0180-5727
Jorge Garza
https://orcid.org/0000-0003-4249-6078

Abstract

A summary of the factors that significantly affect the catalytic properties of transition metal oxides is presented. Among these factors we can mention the particle size, its shape, its chemical composition, the metal-support interaction and the catalyst-molecule interaction. Recent research has shown that it is possible to control some of them by means of a well-controlled synthesis, a deep characterization, and theoretical studies of the catalysts, which allow to recognize the electronic and geometric structures of the catalysts (such as simple atoms, nanoagglomerates or nanoparticles) and correlate them with their behavior in different reactions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Martín Guaregua, N., Viniegra, M., Vargas, R., & Garza, J. (2020). Nanostructured oxides of transition metals with applications in catalysis. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 14(26), 1e-16e. https://doi.org/10.22201/ceiich.24485691e.2021.26.69632
Section
Review articles

References

Baron, M., Abbott H., Bondarchuk O., Stacchiola D., Uhl A., Shaikhutdinov S., Han Freund H.-J., Popa, C., Ganduglia-Pirovano M. V., Sauer J. (2009). Resolving the atomic structure of vanadia monolayer catalysts: monomers, trimers and oligomers on ceria. Angewanted Chemie International Edition, 48: 8006-8009. https://doi.org/10.1002/anie.200903085

Barrera-Calva, E., González-García F., Soriano-Santiago M., Vázquez-Zavala A. y Soto-Estrada A. M. (2016). Novedoso método de síntesis en la obtención de c-ZrO2 a partir de un hidróxido mixto de circonio e ytrio. ContactoS, 101: 39-42.

Campbell, C. T. (2006). Transition metal oxide: extrathermodinamic, stability on thin films. Physical Review Letters, 96: 66106. https://doi.org/10.1103/PhysRevLett.96.066106

Chenakim, S. P., Melaet G., Szukiewitcz R. y Kruse N. (2014). XPS study of the surface chemical state of a Pd/SiO2-TiO2 catalyst after methane oxidation and SO2 treatment. Journal of Catalysis, 312: 1-11. https://doi.org/10.1016/j.jcat.2014.01.008

Dokania, A., Dutta-Choudhury A., Ramírez A., Telalovic S. y Gascon J. (2020). Acidity modification of ZSM-5 for enhanced production of light olefins from CO2. Journal of Catalysis, 381: 347-354. https://doi.org/10.1016/j.jcat.2019.11.015

Fernández, E. M., Soler J. M., Garzon J. L. y Balbas L. C. (2004). Trends in the structure and bonding of noble metal cluster. Physical Reviews B: Condensed Matter, 70: 165403. https://doi.org/10.1103/PhysRevB.70.165403

Fierro, J. L. (2006). Metal oxides: Chemistry and applications, 251-52. Boca Raton FL, EUA: CRC Press Taylor & Francis Ed. ISBN 0-8247-2371-6.

Freund, H. J. (2002). Clusters and islands on oxides from catalyst via electronics and magnetism to optics. Surface Science, 500: 271. https://doi.org/10.1016/S0039-6028(01)01543-6

Freund, H. J. y Pacchioni G. (2008). Oxide ultra-thin films on metals: new materials for the design on supported metal catalyst. Chemical Society Reviews, 37: 2224. https://doi.org/10.1039/B718768H

Goodman, D. W., Peden C. H. F., Chen M. S. (2007). Surface electron accumulation in indium nitride layers grown by high pressure chemical vapor deposition. Surface Science, 601: L124-L126. https://doi.org/10.1016/j.susc.2007.07.018

Grsybowska-Swierosz, B. (1997). Vanadia-Titania catalysts for oxidation of o-xylene and other hydrocarbons. Applied Catalysis A: General, 57: 263. https://doi.org/10.1016/S0926-860X(97)00015-X

Halder, M. H., Dummer N. F., Xhang D., Miedziak P., Davies T. E., Taylor S. H., Willock D. J., Knight D. W., Chadwick D. y Hutchings G. J. (2012). Rubidium and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis, 286: 206-213. https://doi.org/10.1016/j.jcat.2011.11.004

Hu, H. y Wachs I. E. (1995). Surface structures of molybdenum oxide catalyst: characterization by Raman and Mo L3 edge Xanes. Journal of Physical Chemistry, 99: 10897-10910.

Imada, M., Fujimori A. y Tolaura Y. (1998). Metal-insulator transitions. Reviews of Modern Physics, 70: 1039-1263. https://doi.org/10.1021/j100027a034

Jin, S., Wang Z., Tao G., Zhang S. y Yang W. (2017). UV resonance Raman spectroscopic insight into titanium species and structure performance relationship in boron-free-Ti-NWW zeolite. Journal of Catalysis, 353: 305-314. https://doi.org/10.1016/j.jcat.2017.07.032

Kelly, K. L., Coronado E., Zhao L. L., Shatz G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. Journal of Physical Chemistry B, 107: 668-677. https://doi.org/10.1021/jp026731y

Kurtz R. L., Stockbaner R., Madey T. E., Roman E., Segovia, J. L. (1989). Synchrotron radiation studies of H2O adsorption on TiO2 (110). Surface Science, 218: 178-180. https://doi.org/10.1016/0039-6028(89)90626-2

Li, H., Li L. y Li Y. (2013). The electronic structure and geometric structure of nanoclusters as catalytic active sites. Nanotechnology Reviews, 2 (5): 515-528. https://doi.org/10.1515/ntrev-2012-0069

Libuda, J. y Freund H. J. (2005). Molecular beam experiments on model catalyst. Surface Science Reports, 57: 157. https://doi.org/10.1016/j.surfrep.2005.03.002

Liu, L. y Corma A. (2018). Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews, 118: 4981-5079. https://doi.org/ 10.1021/acs.chemrev.7b00776

Martín N. y Viniegra M. (2012). Determinación de la acidez en catalizadores sólidos. ContactoS, 83: 57.

Martín, N. y Viniegra (2013). Catalizadores para oxidación de hidrocarburos. En L. Cedeño-Caero y M. L. Hernández-Pichardo (eds.), Aplicaciones selectas de catálisis. 29-49. Berlín: Ed. Académica Española. ISBN 3659068020.

Martín, N. y Viniegra M. (2018). Óxidos metálicos con aplicaciones en catálisis. Materiales Avanzados, 29: 82-93. https://www.iim.unam.mx/MA/29/#page/82

Martín, N., Rodríguez L., Viniegra M. y Córdoba G. (2018). Conversión de glicerol sobre óxidos de hierro y níquel soportados. Actas del XVI Congreso Iberoamericano de Catálisis: 1814-1818.

Navarrete, A., Rivera A. Marcos, Garza J. y Vargas R. (2018). Importance of one parameter hybrid exchange-correlation functionals in band-gaps of transition metal. Theoretical Chemistry Accounts, 137: 36. https://doi.org/10.1007/s00214-018-2222-3

Nilius, N., Risse T., Schauermann S., Shaikhutdinov S., Sterrer M. y Freund H. J. (2011). Model studies in catalysis. Topics in Catalysis, 54: 4-12. https://doi.org/10.1007/s11244-011-9626-9

Over, H., Balmes O. y Lundgren E. (2009). In situ structure-activity correlation experiments of the ruthenium catalyzed CO oxidation. Catalysis. Today, 145: 236-242. https://doi.org/10.1016/j.cattod.2008.10.048

Qin, Z. H, Lewandowski M., Sun Y.-N., Shaikhutdinov S., Fruend H. J. (2008). Encapsulation of Pt nanoparticles as a result of strong metal-support interaction with Fe3O4 (111). Journal of Physical Chemistry C, 112: 10209-10213. https://doi.org/10.1021/jp801756q

Qin, Z. H., Lewandowski M., Sun Y. N., Shaikhutdinov S. y Freund H. J. (2009). Morphology and CO adsorption on platinum supported on thin Fe3O4 (111) films. Journal of Physics Condensed Matter, 21: 134019. https://doi.org/10.1088/issn.0953-8984

Roldan-Cuenya, B., Behafarid, F. (2015). Nanocatalysis: Size- and shape-dependent chemisorption and catalytic reactivity. Surface Science Reports, 70: 135-187. https://doi.org/10.1016/j.surfrep.2015.01.001

Ren, Y. Ma Z. y Bruce P. G. (2012). Ordered mesoporous metal oxides: synthesis and applications. Royal Society Reviews, 41 (14): 4909-4927. https://doi.org/10.1039/C2CS35086F

Ricca, C., Ringuedé A., Cassir M., Adamo C. y Labat F. (2015). Revealing the properties of the cubic ZrO2 (111) surface by periodic DFT calculations: reducibility and stabilization through doping with aliovalent Y2O3. Royal Society of Chemistry: Advances, 13941-13951. https://doi.org/10.1039/C4RA15206A

Sasahara, A., Pang C. L. y Onishi H. (2006). Probe microscope observation of Pt atoms deposited on the TiO2 (110)-(1x1) surface. Journal of Physical Chemistry B.: 13453-13457. https://doi.org/10.1021/jp062000c

Shannon, R. D. y Prewitt C. T. (1969). Effective ionic radii in oxides and fluorides. Acta Crystalographica B, 25: 925-946. https://doi.org/10.1107/S0567740869003220

Song, X. y Sayari A. (1996). Sulfated zirconia based strong solid-acid catalysts: recent progress. Catalysis Reviews: Science and Engineering, 38: 329-412. https://doi.org/10.1080/01614949608006462

Sun, Y. N., Qin Z. H., Lewandoski M., Carrasco E., Sterrer M. y cols. (2009). Monolayer iron oxide film on platinum promotes low temperature CO oxidation. Journal of Catalysis, 266: 359-368. https://doi.org/10.1016/j.jcat.2009.07.002

Tanabe, K. y Holderich W. F. (1999). Industrial applications of solid-base catalysts. Applied Catalysis A: General, 181: 399-434. https://doi.org/10.1016/S0926-860X(98)00397-4

Tauster, S. J. (1987). Strong metal-support interactions. Accounts of Chemical Research, 20: 389. https://doi.org/0001-4842/87/0120-0389$01.50/0

Vedrine, J. C. (2017). Heterogeneous catalysis on metal oxides. Catalysts, 7: 341. https://doi.org/10.3390/catal7110341

Wachs, I. E. (1999) Preface, Catalysis Today, 51: 201. https://doi.org/0920-5861(99)00048-6

Wang, Y., Yang H. y Zheng N. (2015). Structural engineering of heterometallic clusters. Frontiers of Nanoscience, 9: 73-102. https://doi.org/10.1016/B978-0-08-100086-1.00004-X

Ye, Y., Kapilashrami M., Chuang Ch. H., Liu Y. S., Glans P. A. y Guo J. (2017). X-ray spectroscopies studies of the 3d transition metal oxides and applications of photocatalysis. Materials Research Society: Communications, 7: 53-66. https://doi.org/10.1557/mrc.2017.6

Zaanen, J., Sawatzy G. A. y Allen J. W. (1985). Band gaps and electronic structure of transition-metal compounds. Physical Review Letters, 55: 418-421. https://doi.org/10.1103/PhysRevLett.55.418