Nanotecnología para el control de S. zeamais, T. castaneum y R. dominica, insectos plaga de almacenamiento

Contenido principal del artículo

Saúl Enrique Uribe Rivera
https://orcid.org/0000-0001-6988-6063
Ernesto Cerna Chávez
https://orcid.org/0000-0003-2263-4322
Yisa María Ochoa Fuentes
Lisett Romero Pavón
https://orcid.org/0000-0003-1755-0319

Resumen

Los insectos plaga de granos almacenados representan uno de los mayores riesgos para su producción al deteriorar su calidad y cantidad, causando que estos no sean aptos para el consumo. Si bien el método químico es la vía principal para controlarlos, existen situaciones como resistencia y daño a organismos no objetivo, por lo cual la nanotecnología surge como alternativa para un control más eficiente mediante el empleo de materiales nanoescalados. En este trtabajo se revisan algunas aplicaciones efectivas en el control de los insectos S. zeamais, T. castaneum y R. dominica, específicamente sobre nanopartículas de silicio, cobre, zinc y grafeno, contra estas tres especies.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Uribe Rivera, S. E., Cerna Chávez , E., Ochoa Fuentes , Y. M., & Romero Pavón, L. (2026). Nanotecnología para el control de S. zeamais, T. castaneum y R. dominica, insectos plaga de almacenamiento. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 19(37), e69900. https://doi.org/10.22201/ceiich.24485691e.2026.37.69900
Sección
Artículos de revisión

Citas

Abd El-Latef, E. A., Wahba, M. N., Mousa, S., El-Bassyouni, G. T. y El-Shamy, A. M. (2023). Cu-doped ZnO-nanoparticles as a novel eco-friendly insecticide for controlling Spodoptera littoralis. Biocatalysis and Agricultural Biotechnology, 52(1): 102823. https://doi.org/10.1016/j.bcab.2023.102823. DOI: https://doi.org/10.1016/j.bcab.2023.102823

Abdelfattah, N. A. y Zein, D. M. (2019). Biological studies and toxicity experiments of AEROSIL 200 nanoparticles on adults and larvae of some stored grain insects. International Journal of Entomology Research, 4(1): 103-108. https://www.entomologyjournals.com/assets/archives/2019/vol4issue1/3-6-26-164.pdf.

Abdel-Halim, K. Y. y Attia, M. A. (2018). Toxicity of certain essential oils loaded on silica nanoparticles against Tribolium castaneum (Coleoptera: Tenebrionidae) adults. Egyptian Journal of Plant Protection Research. 1(1): 19-31.

Adegbola, R. Q., Atanda, S. A., Jimoh, M. O., Okparavero, N. F., Aremu, M. B., Ajayi, O. A., ... y Adegbola, J. A. (2024). Nanobiopesticides in post-harvest management of insect pests of crops: present status, challenges and prospects–a review. Fudma Journal of Sciences, 8(4): 40-54. https://doi.org/10.33003/fjs-2024-0804-2557. DOI: https://doi.org/10.33003/fjs-2024-0804-2557

Adler, C., Athanassiou, C., Carvalho, M. O., Emekci, M., Gvozdenac, S., Hamel, D., ... y Trematerra, P. (2022). Changes in the distribution and pest risk of stored product insects in Europe due to global warming: need for pan-European pest monitoring and improved food-safety. Journal of Stored Products Research, 97(1): 101977. https://doi.org/10.1016/j.jspr.2022.101977. DOI: https://doi.org/10.1016/j.jspr.2022.101977

Aghris, S., Chhaibi, B., Ouatmane, F. Z., Alaoui, O. T., Laghrib, F., Farahi, A., ... y Mhammedi, M. E. (2023). An electrochemical sensor based on clay/graphene oxide decorated on chitosan gel for the determination of flubendiamide insecticide. Materials Chemistry and Physics, 296(1): 127243. https://doi.org/10.1016/j.matchemphys.2022.127243. DOI: https://doi.org/10.1016/j.matchemphys.2022.127243

Aisvarya, S., Kalyanasundaram, M., Kannan, M., Arunkumar, P., Preetha, S., Elango, K. y Govindaraju, K. (2024). Comparative analysis of the insecticidal activity against Sitophilus oryzae (L.) and agro-morphological characteristics of maize using non-biogenic and biogenic ZnO nanoparticles. Environmental Science: Nano, 11(5): 2173-2187. https://doi.org/10.1039/D3EN00839H. DOI: https://doi.org/10.1039/D3EN00839H

Aisvarya, S., Kalyanasundaram, M., Kannan, M., Preetha, S., Elango, K., Srinivasan, T. y Govindaraju, K. (2023). Preparation and characterization of silica nanoparticles (sol-gel and river sand): a comparative toxicity studies against seed weevil (Sitophilus oryzae L), and effect on agro-morphological characteristics of maize seeds. Materials Science and Engineering: B, 293: 116503. https://doi.org/10.1016/j.mseb.2023.116503. DOI: https://doi.org/10.1016/j.mseb.2023.116503

Al-Ameri, A. A. K., Jawad Al-Taie, R. A. R. y Kahdum, B. J. (2022). Study of the effect of aqueous cinnamon extract carried on nano zinc oxide in some life aspects of red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Biochemical & Cellular Archives, 22(1). https://connectjournals.com/03896.2022.22.2559.

Alfaro-Corres, A. E., González-Mendoza, D., Ruiz-Sánchez, E., Ail-Catzin, C., Valdez-Salas, B., Gutiérrez-Miceli, F., ... y Pierre, J. F. (2023). Insecticidal activity and physicochemical characterization of nanoparticles from foliar extract of Capsicum chinense. Journal of Renewable Materials. 1(1): 1-9. https://doi.org/10.32604/jrm.2023.031129. DOI: https://doi.org/10.32604/jrm.2023.031129

ALHusani, A. H. (2024). Evaluation of the efficacy of several plant-based insecticides and aqueous nano-silica formulations against the rust-red flour Tribolium castaneum (Herbst.) under laboratory conditions. European Journal of Theoretical and Applied Sciences, 2(3): 1042-1048. https://doi.org/10.59324/ejtas.2024.2(3).xx. DOI: https://doi.org/10.59324/ejtas.2024.2(3).82

Alizadeh, M., Sheikhi-Garjan, A., Ma’mani, L., Hosseini Salekdeh, G. y Bandehagh, A. (2022). Ethology of sunn-pest oviposition in interaction with deltamethrin loaded on mesoporous silica nanoparticles as a nanopesticide. Chemical and Biological Technologies in Agriculture, 9(1): 1-13. https://doi.org/10.1186/s40538-022-00296-1. DOI: https://doi.org/10.1186/s40538-022-00296-1

Anandhi, S., Saminathan, V. R., Yasotha, P., Saravanan, P. T. y Rajanbabu, V. (2020). Nano-pesticides in pest management. Journal of Entomology and Zoology Studies, 8(4): 685-690. https://www.entomoljournal.com/archives/2020/vol8issue4/PartL/8-3-380-752.pdf.

Anees, M. M., Patil, S. B., Kambrekar, D. N., Chandrashekhar, S. S. y Jahagirdar, S. (2022). Biosynthesis, characterization, evaluation, and shelf-life study of silver nanoparticles against cotton bollworm, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera). Nanomaterials, 12(19): 3511. https://doi.org/10.3390/nano12193511. DOI: https://doi.org/10.3390/nano12193511

Anjaneyulu, B., Chauhan, V., Mittal, C. y Afshari, M. (2024). Innovative nanocarrier systems: a comprehensive exploration of recent developments in nano-biopesticide formulations. Journal of Environmental Chemical Engineering, 113693. https://doi.org/10.1016/j.jece.2024.113693. DOI: https://doi.org/10.1016/j.jece.2024.113693

Annon, M. R. y Jafar, F. S. (2020). The effectiveness of silver and silica nanoparticles on productivity and adult emergence of Tribolium castaneum and Callosobruchus maculatus. Journal of Physics: Conference Series, 1664(1): 1-5, noviembre. https://doi.org/10.1088/1742-6596/1664/1/012110. DOI: https://doi.org/10.1088/1742-6596/1664/1/012110

Arumugam, G., Velayutham, V., Shanmugavel, S. y Sundaram, J. (2016). Efficacy of nanostructured silica as a stored pulse protector against the infestation of bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Applied Nanoscience, 6, 445-450. https://doi.org/10.1007/s13204-015-0446-2. DOI: https://doi.org/10.1007/s13204-015-0446-2

Athanassiou, C. G., Kavallieratos, N. G., Benelli, G., Losic, D., Usha Rani, P. y Desneux, N. (2018). Nanoparticles for pest control: current status and future perspectives. Journal of Pest Science, 91(1): 1-15. https://doi.org/10.1007/s10340-017-0898-0. DOI: https://doi.org/10.1007/s10340-017-0898-0

Aziz, D. J. M., Haidir, A. A. y Mustafa, T. A. (2022). Effect of nanoparticles on some biological aspects of the lesser grain borer beetle Rhyzopertha Dominica (Fab.) (Coleoptera: Bostrichidae). NVEO-Natural Volatiles y Essential Oils Journal| NVEO, 487-500.

Babamir-Satehi, A., Ziaee, M. y Ashrafi, A. (2017). Synthesis and toxicological evaluation of silica nanoparticles as chlorpyrifos carrier against the beetle pests Rhyzopertha dominica and Tribolium confusum. Journal of Entomological Society of Iran, 37(2): 235-247.

Badawy, A. A., Abdelfattah, N. A., Salem, S. S., Awad, M. F. y Fouad, A. (2021). Efficacy assessment of biosynthesized copper oxide nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant. Biology, 10(3): 233. https://doi.org/10.3390/biology10030233. DOI: https://doi.org/10.3390/biology10030233

Baliyarsingh, B. y Pradhan, C. K. (2023). Prospects of plant-derived metallic nanopesticides against storage pests – A review. Journal of Agriculture and Food Research, 14, 100687. https://doi.org/10.1016/j.jafr.2023.100687. DOI: https://doi.org/10.1016/j.jafr.2023.100687

Banga, K. S., Kotwaliwale, N., Mohapatra, D. y Giri, S. K. (2018). Techniques for insect detection in stored food grains: an overview. Food Control, 94: 167-176. https://doi.org/10.1016/j.foodcont.2018.07.008. DOI: https://doi.org/10.1016/j.foodcont.2018.07.008

Batool, M., Hussain, D., Akrem, A., Najam-ul-Haq, M., Saeed, S., Zaka, S. M., ... y Saeed, Q. (2020). Graphene quantum dots as cysteine protease nanocarriers against stored grain insect pests. Scientific reports, 10(1): 3444. https://doi.org/10.1038/s41598-020-60432-5. DOI: https://doi.org/10.1038/s41598-020-60432-5

Benelli, G. (2018). Mode of action of nanoparticles against insects. Environmental Science and Pollution Research, 25(13): 12329-12341. https://doi.org/10.1007/s11356-018-1850-4. DOI: https://doi.org/10.1007/s11356-018-1850-4

Bhatnagar, S., Mahanta, D. K., Vyas, V., Samal, I., Komal, J. y Bhoi, T. K. (2024). Storage pest management with nanopesticides incorporating silicon nanoparticles: a novel approach for sustainable crop preservation and food security. Silicon, 16(2): 471-483. https://doi.org/10.1007/s12633-023-02694-y. DOI: https://doi.org/10.1007/s12633-023-02694-y

Cáceres, M., Vassena, C. V., Garcerá, M. D. y Santo-Orihuela, P. L. (2019). Silica nanoparticles for insect pest control. Current Pharmaceutical Design, 25(37): 4030-4038. https://doi.org/10.2174/1381612825666191015152855. DOI: https://doi.org/10.2174/1381612825666191015152855

Cui, S., Wu, Y., Cui, Z., He, P., Huang, N., Xu, W. y Hu, J. (2023). Low-frequency ultrasound-assisted biosynthesis and characterization of ZnO nanoparticles using Bacillus thuringiensis against Tribolium castaneum (Coleoptera, Tenebrionidae). Materials Letters, 341(1): 134158. https://doi.org/10.1016/j.matlet.2023.134158. DOI: https://doi.org/10.1016/j.matlet.2023.134158

Das, S., Yadav, A. y Debnath, N. (2019). Entomotoxic efficacy of aluminium oxide, titanium dioxide and zinc oxide nanoparticles against Sitophilus oryzae (L.): a comparative analysis. Journal of Stored Products Research, 83(1): 92-96. https://doi.org/10.1016/j.jspr.2019.06.003. DOI: https://doi.org/10.1016/j.jspr.2019.06.003

Dasauni, K., Mathpal, P. y Nailwal, T. K. (2022). Polymeric nanoparticle-based insecticide: a critical review of agriculture production. Nano-Enabled Agrochemicals in Agriculture, 445-466. https://doi.org/10.1016/B978-0-323-91009-5.00015-X. DOI: https://doi.org/10.1016/B978-0-323-91009-5.00015-X

Dash, S., Mahapatro, G. K. y Naik, D. J. (2024). Nanopesticides: pros and cons. Plant Archives, 24(2): 107-115. https://doi.org/10.51470/PLANTARCHIVES.2024.v24.no.2.014. DOI: https://doi.org/10.51470/PLANTARCHIVES.2024.v24.no.2.014

De Marchi, L., Pretti, C., Gabriel, B., Marques, P. A. A. P., Freitas, R., Neto, V. (2018). An overview of graphene materials: properties, applications and toxicity on aquatic environments. Science of The Total Envorinment. 631-632: 1440-1456. https://doi.org/10.1016/j.scitotenv.2018.03.132. DOI: https://doi.org/10.1016/j.scitotenv.2018.03.132

Dikbaş, N., Uçar, S., Tozlu, G., Öznülüer Özer, T. y Kotan, R. (2021). Bacterial chitinase biochemical properties, immobilization on zinc oxide (ZnO) nanoparticle and its effect on Sitophilus zeamais as a potential insecticide. World Journal of Microbiology and Biotechnology, 37(1): 1-14. https://doi.org/10.1007/s11274-021-03138-8. DOI: https://doi.org/10.1007/s11274-021-03138-8

Din, M. I. y Rehan, R. (2017). Synthesis, characterization, and applications of copper nanoparticles. Analytical Letters, 50(1): 50-62. https://doi.org/10.1080/00032719.2016.1172081. DOI: https://doi.org/10.1080/00032719.2016.1172081

Draz, K. A., Mohamed, M. I., Tabikha, R. M., Darwish, A. A. y Abo-Bakr, M. A. (2021). Assessment of some physical measures as safe and environmentally friendly alternative control agents for some common coleopteran insects in stored wheat products. Journal of Plant Protection Research, 61(2):156-169. https://doi.org/10.24425/jppr.2021.137025. DOI: https://doi.org/10.24425/jppr.2021.137025

Dziewięcka, M., Karpeta-Kaczmarek, J., Augustyniak, M., Majchrzycki, Ł. y Augustyniak-Jabłokow, M. A. (2016). Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. Journal of Hazardous Materials, 305(1): 30-40. https://doi.org/10.1016/j.jhazmat.2015.11.021. DOI: https://doi.org/10.1016/j.jhazmat.2015.11.021

Eker, F., Duman, H., Akdaşçi, E., Bolat, E., Sarıtaş, S., Karav, S. y Witkowska, A. M. (2024). A comprehensive review of nanoparticles: from classification to application and toxicity. Molecules, 29(15): 3482. https://doi.org/10.3390/molecules29153482. DOI: https://doi.org/10.3390/molecules29153482

El Sayed, T. S., Rizk, S. A. y Sayed, R. M. (2023). Cellophane packaging treated with nano silica is superior to polyethylene in reducing stored irradiated flour from Tribolium confusum infestation. International Journal of Tropical Insect Science, 43(6): 2121-2127. https://doi.org/10.1007/s42690-023-01111-6. DOI: https://doi.org/10.1007/s42690-023-01111-6

El-Bendary, H. M., Abdel-Wahab, A. S. y El-Helaly, A. A. (2016). Entomo-toxic assay of nano-aluminum oxide and nano-zinc oxide against Sitophilus oryzae as a promising insecticide. Egyptian Journal of Zoology, 174(4083): 1-8. https://dx.doi.org/10.12816/0034708. DOI: https://doi.org/10.12816/0034708

Elmasry, N. S. (2021). Efficacy of zinc oxide nanoparticle adding to two neonicotinoids pesticides against Spodoptera litura (Lepidoptera: Noctuidae) and Aphis gossypii Glover. Egyptian Academic Journal of Biological Sciences, F. Toxicology y Pest Control, 13(1): 209-215. https://doi.org/10.21608/eajbsf.2021.161964. DOI: https://doi.org/10.21608/eajbsf.2021.161964

El-Naggar, M. E., Abdelsalam, N. R., Fouda, M. M., Mackled, M. I., Al-Jaddadi, M. A., Ali, H. M., ... y Kandil, E. E. (2020). Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials, 10(4): 739. https://doi.org/10.3390/nano10040739. DOI: https://doi.org/10.3390/nano10040739

El-Saadony, M. T., Abd El-Hack, M. E., Taha, A. E., Fouda, M. M., Ajarem, J. S., N. Maodaa, S. y Elshaer, N. (2020). Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomaterials, 10(3): 587. https://doi.org/10.3390/nano10030587. DOI: https://doi.org/10.3390/nano10030587

El-Samahy, M. F. M., Hamza, A. M. M. y El-Ghobary, A. M. A. (2015). A new silica nanoparticles formulation as stored product protectant. Egyptian Journal of Plant Protection Research, 3(2): 88-103. https://www.researchgate.net/profile/Magdy-El-Samahy/publication/311954607.

EL-Shewy, A. M. (2019). Toxicity of different nano oils formulation against adults of rice weevil, Sitophilus Oryzae under laboratory conditions. Annals of Agriculture Science, Moshtohor. 57(3): 1-6. https://doi.org/10.21608/assjm.2019.98135. DOI: https://doi.org/10.21608/assjm.2019.98135

Eskin, A. y Nurullahoğlu, Z. U. (2022). Effects of zinc oxide nanoparticles (ZnO NPs) on the biology of Galleria mellonella L. (Lepidoptera: Pyralidae). The Journal of Basic and Applied Zoology, 83(1): 54. https://doi.org/10.1186/s41936-022-00318-2. DOI: https://doi.org/10.1186/s41936-022-00318-2

Fang, Y., Lu, Z., Li, M., Qu, J., Ye, W., Li, F., ... y Li, B. (2021). An assessment of the reproductive toxicity of GONPs exposure to Bombyx mori. Ecotoxicology and Environmental Safety, 210(1): 111888. https://doi.org/10.1016/j.ecoenv.2020.111888. DOI: https://doi.org/10.1016/j.ecoenv.2020.111888

Feng, J., Chen, W., Shen, Y., Chen, Q., Yang, J., Zhang, M., ... y Yuan, S. (2020). Fabrication of abamectin-loaded mesoporous silica nanoparticles by emulsion-solvent evaporation to improve photolysis stability and extend insecticidal activity. Nanotechnology, 31(34): 345705. https://doi.org/10.1088/1361-6528/ab91f0. DOI: https://doi.org/10.1088/1361-6528/ab91f0

Ferrari, A. C., Bonaccorso, F., Falk’s, V., Novoselov, K. S., Roche, S., Bøggild, P., ... y Kinaret, J. (2015). Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 7(11): 4598-4810. https://doi.org/10.1039/C4NR01600A. DOI: https://doi.org/10.1039/C4NR01600A

Flasz, B., Dziewięcka, M., Kędziorski, A., Tarnawska, M. y Augustyniak, M. (2020). Vitellogenin expression, DNA damage, health status of cells and catalase activity in Acheta domesticus selected according to their longevity after graphene oxide treatment. Science of The Total Environment, 737: 140274. https://doi.org/10.1016/j.scitotenv.2020.140274. DOI: https://doi.org/10.1016/j.scitotenv.2020.140274

Gacem, M. A. y Chaibi, R. (2022). Cu-based nanoparticles as pesticides: applications and mechanism of management of insect pests. In Copper nanostructures: next-generation of agrochemicals for sustainable agroecosystems. Elsevier, 203-218. https://doi.org/10.1016/B978-0-12-823833-2.00023-4. DOI: https://doi.org/10.1016/B978-0-12-823833-2.00023-4

Gamal, M. M. Z. (2018). Nano-particles: a recent approach for controlling stored grain insect pests. Conference Proceedings, 6(5): 88-94. https://doi.org/10.15413/ajar.2017.IECCNA.14.

Gao, X., Shi, F., Peng, F., Shi, X., Cheng, C., Hou, W., ... y Wang, X. (2021). Formulation of nanopesticide with graphene oxide as the nanocarrier of pyrethroid pesticide and its application in spider mite control. RSC Advances, 11(57): 36089-36097. https://doi.org/10.1039/D1RA06505J. DOI: https://doi.org/10.1039/D1RA06505J

Gindaba, A., Negeri, M. y Saka, A. (2023). Entomotoxicity of ZnO NPs synthesized using Clausena anisata Hook. f. ex Benth (ulmaayii) leaf extract against maize weevil, Sitophilus zeamais Mostch (Coleoptera: curculionidae). Journal of Phytology, 15(1): 155-162. https://doi.org/10.25081/jp.2023.v15.8620. DOI: https://doi.org/10.25081/jp.2023.v15.8620

Gouda, M. R. y Ashwini, L. M. B. (2023). Emerging role of entomopathogenic fungi in nanoparticle synthesis and their application in pest control. Journal of Plant Biology and Crop Research. 6(2): 1-8.

Gupta, R., Saxena, T., Mehra, N., Arora, R. y Sahgal, A. (2023). Nanopesticides: promising future in sustainable pest management. Journal of Advanced Applied Scientific Research, 5(2): 22-37. https://doi.org/10.46947/joaasr522023515. DOI: https://doi.org/10.46947/joaasr522023515

Guru, P. N., Mridula, D., Dukare, A. S., Ghodki, B. M., Paschapur, A. U., Samal, I., ... y Subbanna, A. R. (2022). A comprehensive review on advances in storage pest management: current scenario and future prospects. Frontiers in Sustainable Food Systems, 6(1): 1-21. https://doi.org/10.3389/fsufs.2022.993341. DOI: https://doi.org/10.3389/fsufs.2022.993341

Haider, Z., Ayub, A. R., Tahir, M. U., Sajid, S. A. y Khalid, M. (2020). Efficacy and characterization of synthesized zinc oxide nanoparticles against Tribolium castaneum and Trogoderma granarium. International Journal of Scientific and Research Publications, 10(3): 131-151. http://dx.doi.org/10.29322/IJSRP.10.03.2020.p9912. DOI: https://doi.org/10.29322/IJSRP.10.03.2020.p9912

Hamdy, E., Al-Askar, A. A., El-Gendi, H., Khamis, W. M., Behiry, S. I., Valentini, F., ... y Abdelkhalek, A. (2023). Zinc oxide nanoparticles biosynthesized by Eriobotrya japonica leaf extract: characterization, insecticidal and antibacterial properties. Plants, 12(15): 2826. https://doi.org/10.3390/plants12152826. DOI: https://doi.org/10.3390/plants12152826

Haroun, S. A., Elnaggar, M. E., Zein, D. M. y Gad, R. I. (2020). Insecticidal efficiency and safety of zinc oxide and hydrophilic silica nanoparticles against some stored seed insects. Journal of Plant Protection Research, 60(1): 77-85. https://doi.org/10.24425/jppr.2020.132211.

Hernández-Tenorio, F. y Orozco-Sánchez, F. (2020). Nanoformulaciones de bioinsecticidas botánicos para el control de plagas agrícolas. Revista de la Facultad de Ciencias, 9(1): 72-91. https://doi.org/10.15446/rev.fac.cienc.v9n1.81401. DOI: https://doi.org/10.15446/rev.fac.cienc.v9n1.81401

Hilal, S. M., Mohmed, A. S., Barry, N. M. y Ibrahim, M. H. (2021). Entomotoxicity of TiO2 and ZnO nanoparticles against adults Tribolium Castaneum (Herbest) (Coleoptera: Tenebrionidae). In IOP Conference Series: Earth and Environmental Science, 910(1): 012088, noviembre. IOP Publishing. https://doi.org/10.1088/1755-1315/910/1/012088. DOI: https://doi.org/10.1088/1755-1315/910/1/012088

Ibrahim, S., Elbe Hery, H. y Samy, A. (2022). Insecticidal activity of ZnO NPs synthesized by green method using pomegranate peels extract on stored product insects. Egyptian Journal of Chemistry, 65(4): 135-145. https://dx.doi.org/10.21608/ejchem.2021.92692.4496. DOI: https://doi.org/10.21608/ejchem.2021.92692.4496

Jafar, F. S. y Annon, M. R. (2018). Insecticidal effect of silica nanoparticles against Tribolium castaneum and Callosobruchus maculatus. Biochemical y Cellular Archives, 18(1).

Jafir, M., Irfan, M., Zia-ur-Rehman, M., Hafeez, F., Ahmad, J. N., Sabir, M. A., ... y Moosa, A. (2023). The global trend of nanomaterial usage to control the important agricultural arthropod pests: a comprehensive review. Plant stress, 10, 100208. https://doi.org/10.1016/j.stress.2023.100208. DOI: https://doi.org/10.1016/j.stress.2023.100208

Jahan, N., Rasheed, K., Hazafa, A., Saleem, A., Alamri, S., Iqbal, M. O. y Rahman, M. A. (2023). Green inspired synthesis of zinc oxide nanoparticles using Silybum marianum (milk thistle) extract and evaluation of their potential pesticidal and phytopathogens activities. PeerJ, 11: e15743. https://doi.org/10.7717/peerj.15743. DOI: https://doi.org/10.7717/peerj.15743

Jameel, M., Shoeb, M., Khan, M. T., Ullah, R., Mobin, M., Farooqi, M. K. y Adnan, S. M. (2020).

Enhanced insecticidal activity of thiamethoxam by zinc oxide nanoparticles: a novel nanotechnology approach for pest control. ACS Omega, 5(3): 1607-1615. https://doi.org/10.1021/acsomega.9b03680. DOI: https://doi.org/10.1021/acsomega.9b03680

Jampilek, J. y Kralova, K. (2022). Advances in biologically applicable graphene-based 2D nanomaterials. International Journal of Molecular Sciences, 23(11): 1-38. https://doi.org/10.3390/ijms23116253. DOI: https://doi.org/10.3390/ijms23116253

Jin, T., Li, F., Cheng, J., Wu, S., Zhou, H. y Cheng, M. (2016). Polymer monolithic column containing embedded graphene oxide sheets for sensitive determination of carbamate insecticides by HPLC. Microchimica Acta, 183(1): 543-551. https://doi.org/10.1007/s00604-015-1637-y. DOI: https://doi.org/10.1007/s00604-015-1637-y

Kah, M. y Hofmann, T. (2014). Nanopesticide research: current trends and future priorities. Environment International, 63(1): 224-235. https://doi.org/10.1016/j.envint.2013.11.015. DOI: https://doi.org/10.1016/j.envint.2013.11.015

Kannan, M., Bojan, N., Swaminathan, J., Zicarelli, G., Hemalatha, D., Zhang, Y., ... y Faggio, C. (2023). Nanopesticides in agricultural pest management and their environmental risks: a review. International Journal of Environmental Science and Technology, 20(9): 10507-10532. https://doi.org/10.1007/s13762-023-04795-y. DOI: https://doi.org/10.1007/s13762-023-04795-y

Kar, S., Nayak, R. N., Sahoo, N. R., Bakhara, C. K., Panda, M. K., Pal, U. S. y Bal, L. M. (2021). Rice weevil management through application of silica nano particle and physico-chemical and cooking characterization of the treated rice. Journal of Stored Products Research, 94: 101892. https://doi.org/10.1016/j.jspr.2021.101892. DOI: https://doi.org/10.1016/j.jspr.2021.101892

Kora, A. J. (2022). Copper-based nanopesticides. Copper nanostructures: next-generation of agrochemicals for sustainable agroecosystems. Nanobiotechnology for Plant Protection, 133-153. https://doi.org/10.1016/B978-0-12-823833-2.00019-2. DOI: https://doi.org/10.1016/B978-0-12-823833-2.00019-2

Kumar, S., Bhanjana, G., Sharma, A., Dilbaghi, N., Sidhu, M. C. y Kim, K. H. (2017). Development of nanoformulation approaches for the control of weeds. Sci. Total Environment, 586(1): 1272-1278. https://doi.org/10.1016/j.scitotenv.2017.02.138. DOI: https://doi.org/10.1016/j.scitotenv.2017.02.138

Lampiri, E. y Moisidis, I. C. (2022). Evaluation of graphene for the control of stored product insects. Preceedings of the 13th Meeting, Integrated Protection of Stored Products. 159(1): 171-175. https://iobc-wprs.org/product/iobc-wprs-bulletin-vol-159-2022/.

Lampiri, E., Yap, P. L., Berillis, P., Athanassiou, C. G. y Losic, D. (2024). Graphene powders as new contact nanopesticides: revealing key parameters on their insecticidal activity for stored product insects. Chemosphere, 364: 143200. https://doi.org/10.1016/j.chemosphere.2024.143200. DOI: https://doi.org/10.1016/j.chemosphere.2024.143200

Li, C., Han, Y., Gao, T., Zhang, J., Xu, D. X. y Wāng, Y. (2023). Insecticidal activity of metallic nanopesticides synthesized from natural resources: a review. Environmental Chemistry Letters, 21(2): 1141-1176. https://doi.org/10.1007/s10311-022-01548-0. DOI: https://doi.org/10.1007/s10311-022-01548-0

Li, X., Chen, Y., Xu, J., Lynch, I., Guo, Z., Xie, C. y Zhang, P. (2023). Advanced nanopesticides: advantage and action mechanisms. Plant Physiology and Biochemistry, 108051. https://doi.org/10.1016/j.plaphy.2023.108051. DOI: https://doi.org/10.1016/j.plaphy.2023.108051

Liu, G., Li, L., Xu, D., Huang, X., Xu, X., Zheng, S., ... y Lin, H. (2017). Metal–organic framework preparation using magnetic graphene oxide–β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydrate Polymers, 175(1): 584-591. https://doi.org/10.1016/j.carbpol.2017.06.074. DOI: https://doi.org/10.1016/j.carbpol.2017.06.074

Manandhar, A., Milindi, P. y Shah, A. (2018). An overview of the post-harvest grain storage practices of smallholder farmers in developing countries. Agriculture, 8(4): 57. https://doi.org/10.3390/agriculture8040057. DOI: https://doi.org/10.3390/agriculture8040057

Manna, S., Roy, S, Dolai, A., Ravula, A. R., Perumal, V. y Das, A. (2023). Current and future prospects of “all-organic” nanoinsecticides for agricultural insect pest management. Frontiers in Nanotechnology, 4: 1082128. https://doi.org/10.3389/fnano.2022.1082128. DOI: https://doi.org/10.3389/fnano.2022.1082128

Martins, C. H., de Sousa, M., Fonseca, L. C., Martinez, D. S. T. y Alves, O. L. (2019). Biological effects of oxidized carbon nanomaterials (1D versus 2D) on Spodoptera frugiperda: material dimensionality influences on the insect development, performance and nutritional physiology. Chemosphere, 215: 766-774. https://doi.org/10.1016/j.chemosphere.2018.09.178. DOI: https://doi.org/10.1016/j.chemosphere.2018.09.178

Maryum, A., Yasmin, H., Saeed, Q., Ahmed, A. M., Popescu, S. M. y Ahmad, F. (2024). Phytofabrication and characterization of ZnO nanoparticles with Anagallis arvensis as promising eco-friendly insecticide against Tribolium castaneum Herbst. Journal of King Saud University-Science, 36(5): 103162. https://doi.org/10.1016/j.jksus.2024.103162. DOI: https://doi.org/10.1016/j.jksus.2024.103162

Mehmood, S., Thirup, S. S., Ahmed, S., Bashir, N., Saeed, A., Rafiq, M., ... y Akrem, A. (2024). Crystal structure of Kunitz-type trypsin inhibitor: entomotoxic effect of native and encapsulated protein targeting gut trypsin of Tribolium castaneum Herbst. Computational and Structural Biotechnology Journal, 23: 3132-3142. https://doi.org/10.1016/j.csbj.2024.07.023. DOI: https://doi.org/10.1016/j.csbj.2024.07.023

Mesterházy, Á., Oláh, J. y Popp, J. (2020). Losses in the grain supply chain: causes and solutions. Sustainability, 12(6): 1-18. https://doi.org/10.3390/su12062342. DOI: https://doi.org/10.3390/su12062342

Moisidis, I. C., Sakka, M. K., Karunagaran, R., Losic, D. y Athanassiou, C. G. (2022). Insecticidal effect of graphene against three stored-product beetle species on wheat. Journal of Stored Products Research, 98(1): 101999. https://doi.org/10.1016/j.jspr.2022.101999. DOI: https://doi.org/10.1016/j.jspr.2022.101999

Mubeen, I., Mfarrej, M. F. B., Razaq, Z., Iqbal, S., Naqvi, S. A. H., Hakim, F., ... y Li, B. (2023). Nanopesticides in comparison with agrochemicals: outlook and future prospects for sustainable agriculture. Plant Physiology and Biochemistry, 107670. https://doi.org/10.1016/j.plaphy.2023.107670. DOI: https://doi.org/10.1016/j.plaphy.2023.107670

Mustafa, I. F. y Hussein, M. Z. (2020). Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials, 10(8): 1608. https://doi.org/10.3390/nano10081608. DOI: https://doi.org/10.3390/nano10081608

Nasr, M. (2015). Impact of nanoparticle zinc oxide and aluminum oxide against rice weevil Sitophilus Oryzae (Coleoptera: Curculionidae) under laboratory conditions. Egyptian Journal of Plant Protection. Research, 3(3): 30-38. https://kfs.edu.eg/agre/pdf/184201611233516.pdf.

Padmasri, A., Rameash, K. y Jayanth, B. V. (2023). Nanoparticles-an alternate strategy for the management of rice weevil (Sitophilus oryzae Linnaeus) in maize seeds. Journal of Experimental Zoology India, 26(2). https://doi.org/10.51470/jez.2023.26.2.2255. DOI: https://doi.org/10.51470/jez.2023.26.2.2255

Paradva, K. C. y Kalla, S. (2023). Nanopesticides: a review on current research and future perspective. Chemistry Select, 8(26): e202300756. https://doi.org/10.1002/slct.202300756. DOI: https://doi.org/10.1002/slct.202300756

Patil, C. D., Borase, H. P., Suryawanshi, R. K. y Patil, S. V. (2016). Trypsin inactivation by latex fabricated gold nanoparticles: a new strategy towards insect control. Enzyme and Microbial Technology, 92(1): 18-25. https://doi.org/10.1016/j.enzmictec.2016.06.005. DOI: https://doi.org/10.1016/j.enzmictec.2016.06.005

Patil, N. B., Sharanagouda, H., Ramachandra, C. T., Ramappa, K. T., Doddagoudar, S. R. y Nadagouda, S. (2018). Efficacy of rice husk silica nanoparticles against Sitophilus oryzae (L) and Xanthomonas oryzae. Journal of Pharmacognosy and Phytochemistry, 7(4S): 259-264. DOI: https://doi.org/10.20546/ijcmas.2018.712.374

Pittarate, S., Rajula, J., Rahman, A., Vivekanandhan, P., Thungrabeab, M., Mekchay, S. y Krutmuang, P. (2021). Insecticidal effect of zinc oxide nanoparticles against Spodoptera frugiperda under laboratory conditions. Insects, 12(11): 1017. https://doi.org/10.3390/insects12111017. DOI: https://doi.org/10.3390/insects12111017

Rai, M., Ingle, A. P., Pandit, R., Paralikar, P., Shende, S., Gupta, I., ... y da Silva, S. S. (2018). Copper and copper nanoparticles: role in management of insect-pests and pathogenic microbes. Nanotechnology Reviews, 7(4): 303-315. https://doi.org/10.1515/ntrev-2018-0031. DOI: https://doi.org/10.1515/ntrev-2018-0031

Rajendran, S. (2020). Insect pest management in stored products. Outlooks on Pest Management, 31(1): 24-35. https://doi.org/10.1564/v31_feb_05. DOI: https://doi.org/10.1564/v31_feb_05

Rajiv, P., Chen, X., Li, H., Rehaman, S., Vanathi, P., Abd-Elsalam, K. A. y Li, X. (2020). Silica-based nanosystems: their role in sustainable agriculture. In Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems. Elsevier, 437-459. https://doi.org/10.1016/B978-0-12-821354-4.00018-2. DOI: https://doi.org/10.1016/B978-0-12-821354-4.00018-2

Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., ... y Brestic, M. (2019). Application of silicon nanoparticles in agriculture. 3 Biotech, 9: 1-11. https://doi.org/10.1007/s13205-019-1626-7. DOI: https://doi.org/10.1007/s13205-019-1626-7

Rathore, A., Hasan, W., NM, R., Pujar, K., Singh, R., Panotra, N. y Satapathy, S. N. (2024). Nanotech for crop protection: utilizing nanoparticles for targeted pesticide delivery. UTTAR Pradesh Journal of Zoology, 45(6): 46-71. https://doi.org/10.56557/upjoz/2024/v45i63950. DOI: https://doi.org/10.56557/upjoz/2024/v45i63950

Rouhani, M., Samih, M. A., Zarabi, M., Beiki, K., Gorji, M. y Aminizadeh, M. R. (2019). Synthesis and entomotoxicity assay of zinc and silica nanoparticles against Sitophilus granarius (Coleoptera: Curculionidae). Journal of Plant Protection Research, 1(1): 26-31. https://doi.org/10.24425/jppr.2020.132211. DOI: https://doi.org/10.24425/jppr.2020.132211

Saed, B., Ziaee, M., Kiasat, A. R. y Jafari nasab, M. (2020). Preparation of nanosilica from sugarcane bagasse ash for enhanced insecticidal activity of diatomaceous earth against two stored-products insect pests. Toxin Reviews, 41(2): 516-522. https://doi.org/10.1080/15569543.2021.1903038. DOI: https://doi.org/10.1080/15569543.2021.1903038

Saed, B., Ziaee, M., Kiasat, A. y Jafari Nasab, M. (2021). Evaluation of Iranian diatomaceous earth in combination with nanosilica from sugarcane bagasse ash applied on three different storage surfaces against two insect pests of stored products. International Journal of Tropical Insect Science, 41: 1747-1752. https://doi.org/10.1007/s42690-020-00380-9. DOI: https://doi.org/10.1007/s42690-020-00380-9

Salah, S., Alyousuf, A. A. y Abass, M. H. (2023). Efficiency of silicon and silver nanoparticles against the infestation of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) on wheat grains under laboratory conditions. Basra Journal of Agricultural Sciences, 36(2): 175-184. https://doi.org/10.37077/25200860.2023.36.2.13. DOI: https://doi.org/10.37077/25200860.2023.36.2.13

Salem, A. A. (2020). Comparative insecticidal activity of three forms of silica nanoparticles on some main stored product insects. Journal of Plant Protection and Pathology, 11(4): 225-230. https://dx.doi.org/10.21608/jppp.2020.96009. DOI: https://doi.org/10.21608/jppp.2020.96009

Salem, A. A., Hamzah, A. M. y El-Taweelah, N. M. (2015). Aluminum and zinc oxides nanoparticles as a new method for controlling the red flour beetles, Tribolium castaneum (Herbst) compared to malathion insecticide. Journal of Plant Protection and Pathology, 6(1): 129-137. https://dx.doi.org/10.21608/jppp.2015.53186. DOI: https://doi.org/10.21608/jppp.2015.53186

Sarmah, K., Borah, R., Boruah, S. y Sarmah, D. (2023). Nanopesticides: revolutionizing pest management with nanotechnology. Biological Forum – An International Journal, 15(7): 210-218.

Saw, G., Namdev, P., Jeer, M. y Murali-Baskaran, R. K. (2023). Silica nanoparticles mediated insect pest management. Pesticide Biochemistry and Physiology, 194(1): 105524. https://doi.org/10.1016/j.pestbp.2023.105524. DOI: https://doi.org/10.1016/j.pestbp.2023.105524

Shahzad, K. y Manzoor, F. (2021). Nanoformulations and their mode of action in insects: a review of biological interactions. Drug and Chemical Toxicology, 44(1): 1-11. https://doi.org/10.1080/01480545.2018.1525393. DOI: https://doi.org/10.1080/01480545.2018.1525393

Sharma, S., Singh, S., Ganguli, A. K. y Shanmugam, V. (2017). Anti-drift nano-stickers made of graphene oxide for targeted pesticide delivery and crop pest control. Carbon, 115(1): 781-790. https://doi.org/10.1016/j.carbon.2017.01.075. DOI: https://doi.org/10.1016/j.carbon.2017.01.075

Shekhar, S., Sharma, S., Kumar, A., Taneja, A., and Sharma, B. (2021). The framework of nanopesticides: a paradigm in biodiversity. Materials Advances 2: 6569-6588. https://doi.org/10.1039/D1MA00329A. DOI: https://doi.org/10.1039/D1MA00329A

Siddique, M. A., Hasan, M. U., Sagheer, M. y Sahi, S. T. (2022). Comparative toxic effects of Eucalyptus globulus L. (Myrtales: Myrtaceae) and its green synthesized zinc oxide nanoparticles (ZnONPs) against Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). International Journal of Tropical Insect Science, 42(1): 1697-1706. https://doi.org/10.1007/s42690-021-00691-5. DOI: https://doi.org/10.1007/s42690-021-00691-5

Singh, B. y Kaur, A. (2018). Control of insect pests in crop plants and stored food grains using plant saponins: a review. Lwt, 87(1): 93-101. https://doi.org/10.1016/j.lwt.2017.08.077. DOI: https://doi.org/10.1016/j.lwt.2017.08.077

Solorzano Toala, R., Gutierrez-Miceli, F., Valdez-Salas, B., Beltran-Partida, E., Gonzalez-Mendoza, D., Tzintzun-Camacho, O., ... y Basilio-Cortes, A. (2024). Biosynthesis of copper nanoparticles from Acacia cornigera and Annona purpurea and their insecticidal effect against Tribolium castaneum. Reactions, 5(2): 274-284. https://doi.org/10.3390/reactions5020013. DOI: https://doi.org/10.3390/reactions5020013

Song, S., Wan, M., Feng, W., Zhang, J., Mo, H., Jiang, X., ... y Shen, J. (2021). Graphene oxide as the potential vector of hydrophobic pesticides: ultrahigh pesticide loading capacity and improved antipest activity. ACS Agricultural Science y Technology, 1(3): 182-191. https://pubs.acs.org/doi/10.1021/acsagscitech.1c00002?goto=supporting-info. DOI: https://doi.org/10.1021/acsagscitech.1c00002

Srivastava, C. y Subramanian, S. (2016). Storage insect pests and their damage symptoms: an overview. Indian Journal of Entomology, 78(1): 53-58. http://dx.doi.org/10.5958/0974-8172.2016.00025.0. DOI: https://doi.org/10.5958/0974-8172.2016.00025.0

Stathas, I. G., Sakellaridis, A. C., Papadelli, M., Kapolos, J., Papadimitriou, K. y Stathas, G. J. (2023). The effects of insect infestation on stored agricultural products and the quality of food. Foods, 12(10): 1-11. https://doi.org/10.3390/foods12102046. DOI: https://doi.org/10.3390/foods12102046

Stejskal, V., Aulicky, R. y Kucerova, Z. (2014). Pest control strategies and damage potential of seed-infesting pests in the Czech stores — A review. Plant Protection Science, 50(4): 165-173. https://doi.org/10.17221/10/2014-pps. DOI: https://doi.org/10.17221/10/2014-PPS

Summer, M., Tahir, H. M., Ali, S., Nawaz, S., Abaidullah, R., Mumtaz, S., ... y Gormani, A. H. (2024). Nanobiopesticides as an alternative and sustainable solution to tackle pest outbreaks. Journal of the Kansas Entomological Society, 96(4): 112-136. https://doi.org/10.2317/0022-8567-96.4.112. DOI: https://doi.org/10.2317/0022-8567-96.4.112

Sundaresan, P., Karikalan, N., Na, J. H. y Lee, T. Y. (2023). Design and investigation of barium vanadate nanoflakes incorporated on the multi-layered graphene nanocomposite: an efficient electrocatalyst for the rapid determination of hazardous insecticide methiocarb in environmental media. Journal of Environmental Chemical Engineering, 11(2): 109220. https://doi.org/10.1016/j.jece.2022.109220. DOI: https://doi.org/10.1016/j.jece.2022.109220

Thabet, A. F., Boraei, H. A., Galal, O. A., El-Samahy, M. F., Mousa, K. M., Zhang, Y. Z., ... y Nozaki, T. (2021). Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Scientific Reports, 11(1): 14484. https://doi.org/10.1038/s41598-021-93518-9. DOI: https://doi.org/10.1038/s41598-021-93518-9

Thakur, P., Thakur, S., Kumari, P., Shandilya, M., Sharma, S., Poczai, P., ... y Sayyed, R. Z. (2022). Nano-insecticide: synthesis, characterization, and evaluation of insecticidal activity of ZnO NPs against Spodoptera litura and Macrosiphum euphorbiae. Applied Nanoscience, 12(12): 3835-3850. https://doi.org/10.1007/s13204-022-02530-6. DOI: https://doi.org/10.1007/s13204-022-02530-6

Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., ur Rehman, H., ... y Sanaullah, M. (2020). Nanotechnology in agriculture: current status, challenges and future opportunities. Science of the total environment, 721(1): 1-16. https://doi.org/10.1016/j.scitotenv.2020.137778. DOI: https://doi.org/10.1016/j.scitotenv.2020.137778

Victoria, J., Tripathi, S., Prakash, V., Tiwari, K., Mahra, S., Sharma, A., ... y Sharma, S. (2023). Encapsulated nanopesticides application in plant protection: Quo vadis? Plant Physiology and Biochemistry, 108225. https://doi.org/10.1016/j.plaphy.2023.108225. DOI: https://doi.org/10.1016/j.plaphy.2023.108225

Vivekanandhan, P., Deepa, S., Kweku, E. J. y Shivakumar, M. S. (2018). Toxicity of Fusarium oxysporum-VKFO-01 derived silver nanoparticles as potential inseciticide against three mosquito vector species (Diptera: Culicidae). Journal of Cluster Science, 29(1): 1139-1149. https://doi.org/10.1007/s10876-018-1423-1. DOI: https://doi.org/10.1007/s10876-018-1423-1

Wang, X., Xie, H., Wang, Z., He, K. y Jing, D. (2019). Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environmental Science: Nano, 6(1): 75-84. https://doi.org/10.1039/C8EN00902C. DOI: https://doi.org/10.1039/C8EN00902C

Wang, X., Zhang, T., Xie, H., Wang, Z., Jing, D., He, K. y Gao, X. (2021). Phenotypic responses and potential genetic mechanism of lepidopteran insects under exposure to graphene oxide. Ecotoxicology and Environmental Safety, 228: 113008. https://doi.org/10.1016/j.ecoenv.2021.113008. DOI: https://doi.org/10.1016/j.ecoenv.2021.113008

Wazid, S. N., Prabhuraj, A., Naik, R. H., Shakuntala, N. M. y Sharanagouda, H. (2020). The persistence of residual toxicity of zinc, copper and silica green nanoparticles against important storage pests. Journal of Entomology and Zoology Studies, 8(5): 1207-1211.

Xu, Z., Tang, T., Lin, Q., Yu, J., Zhang, C., Zhao, X., ... y Li, L. (2022). Environmental risks and the potential benefits of nanopesticides: a review. Environmental Chemistry Letters, 20(3): 2097-2108. https://doi.org/10.1007/s10311-021-01338-0. DOI: https://doi.org/10.1007/s10311-021-01338-0

Yadav, J., Jasrotia, P., Kashyap, P. L., Bhardwaj, A. K., Kumar, S., Singh, M. y Singh, G. P. (2021). Nanopesticides: current status and scope for their application in agriculture. Plant Protection Science, 58(1): 1-17. https://doi.org/10.1007/s10311-021-01338-0. DOI: https://doi.org/10.17221/102/2020-PPS

Yang, F. L., Li, X. G., Zhu, F. y Lei, C. L. (2009). Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of agricultural and food chemistry, 57(21): 10156-10162. https://doi.org/10.1021/jf9023118. DOI: https://doi.org/10.1021/jf9023118

Yuvaraj, M., Priya, R. S., Jagathjothi, N., Saranya, M., Suganthi, N., Sharmila, R., ... y Subramanian, K. S. (2023). Silicon nanoparticles (SiNPs): challenges and perspectives for sustainable agriculture. Physiological and Molecular Plant Pathology, 102161. https://doi.org/10.1016/j.pmpp.2023.102161. DOI: https://doi.org/10.1016/j.pmpp.2023.102161

Zannat, R., Rahman, M. M. y Afroz, M. (2021). Application of nanotechnology in insect pest management: a review. SAARC Journal of Agriculture, 19(2): 1-11. https://doi.org/10.3329/sja.v19i2.57668. DOI: https://doi.org/10.3329/sja.v19i2.57668

Zayed, G. M. M., Hussain, H. B. H. y Soliman, M. E. S. (2020). Aluminum and silica oxides nanoparticles as a new approach for control the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae) on wheat grains. Egyptyan Journal of Plant Protection Research Institute. (2020): 3(1): 281-289. http://www.ejppri.eg.net/pdf/v3n1/25.pdf.

Ziaee, M. y Ganji, Z. (2016). Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. Journal of Plant Protection Research, 56(3): 250-256. https://doi.org/10.1515/jppr-2016-0037. DOI: https://doi.org/10.1515/jppr-2016-0037

Artículos similares

También puede {advancedSearchLink} para este artículo.