Nanopartículas metálicas antimicrobianas: resistencia bacteriana, implicaciones y nuevos desafíos
Contenido principal del artículo
Resumen
l objetivo del presente trabajo es comprender la creciente amenaza que representa la resistencia bacteriana a los antibióticos convencionales, y la necesidad de abordar alternativas como lo son las NPs metálicas con una alta actividad antibacteriana. Esto incluye entender los mecanismos de resistencia desarrollados por las bacterias, tanto para antibióticos convencionales como para NPs metálicas y la amenaza de una resistencia cruzada. La resistencia bacteriana a los antibióticos convencionales representa una gran amenaza para la salud humana. Su uso inadecuado para el tratamiento de enfermedades no bacterianas y en actividades agrícolas, así como el desecho imprudente de los antibióticos ha generado un incremento de bacterias multirresistentes. Por lo anterior, es importante la búsqueda de alternativas que no solamente controlen la infección en el hospedero, sino que también eviten la diseminación de los microrganismos resistentes. Las nanopartículas metálicas han surgido como una buena alternativa por sus propiedades fisicoquímicas y su gran actividad antibacteriana, además de ser efectivas contra bacterias multirresistentes. En los últimos años se han incrementado los reportes de bacterias resistentes a nanopartículas de plata y cobre principalmente, y de los mecanismos de resistencia, lo cual tiene implicaciones relevantes, pues las nanopartículas metálicas podrían favorecer la resistencia a los antibióticos y la resistencia cruzada a metales en aguas residuales, impactando comunidades complejas de microrganismos. El uso de nanopartículas metálicas con propiedades antibacterianas va en aumento y su liberación al medio ambiente podría estar generando bacterias resistentes, por lo cual es importante considerar los aspectos regulatorios asociados con el uso extendido de nanomateriales con actividad antimicrobiana y el seguimiento de bacterias resistentes.
Descargas
Detalles del artículo

Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Aguilar-Vega, L., López-Jácome, L. E., Franco, B., Muñoz-Carranza, S., Vargas-Maya, N., Franco-Cendejas, R., Hernández-Durán, M., Otero-Zúñiga, M., Campo-Beleño, C., Jiménez-Cortés, J. G., Martínez-Vázquez, M., Rodríguez-Zavala, J. S., Maeda, T., Zurabian, R. y García-Contreras, R. (2021). Antibacterial properties of phenothiazine derivatives against multidrug-resistant Acinetobacter baumannii strains. Journal of Applied Microbiology, 131(5): 2235-43. https://doi.org/10.1111/jam.15109.
Alhajjar, R. K., Roche, K. M. y Techtmann, S. M. (2022). Comparative analysis of the mechanism of resistance to silver nanoparticles and the Biocide 2,2-Dibromo-3-Nitrilopropionamide. Antimicrobial Agents and Chemotherapy, 66(6). https://doi.org/10.1128/aac.02031-21.
Arrault, C., Monneau, Y. R., Martin, M., Cantrelle, F. X., Boll, E., Chirot, F., Comby, C., Walker, O. y Hologne, M. (2023). The battle for silver binding: how the interplay between the SilE, SilF, and SilB proteins contributes to the silver efflux pump mechanism. The Journal of Biological Chemistry, 299(8): 105004. https://doi.org/10.1016/j.jbc.2023.105004.
Bombaywala, S., Purohit, H. J. y Dafale, N. A. (2021). Mobility of antibiotic resistance and its co-occurrence with metal resistance in pathogens under oxidative stress. Journal of environmental management, 297: 113315. https://doi.org/10.1016/j.jenvman.2021.113315.
Cao, M., Wang, F., Zhou, B., Chen, H., Yuan, R., Ma, S., Geng, H., Li, J., Lv, W., Wang, Y. y Xing, B. (2023). Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. Journal of hazardous materials, 443(Pt A): 130201. https://doi.org/10.1016/j.jhazmat.2022.130201.
Christaki, E., Marcou, M. y Tofarides, A. (2019). Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. Journal of Molecular Evolution, 88(1): 26-40. https://doi.org/10.1007/s00239-019-09914-3.
Colín-Castro C. A., López-Jácome L. E., Rodríguez-García M. J., Garibaldi-Rojas M., Rojas-Larios F. et al. (2025). The ongoing antibiotic resistance and carbapenemase encoding genotypes surveillance. The first quarter report of the INVIFAR network for 2024. PLOS ONE, 20(4). https://doi.org/10.1371/journal.pone.0319441.
Cui, H. y Smith, A. (2022). Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: a comprehensive review. Environmental Research, 204(PD): 112373. https://doi.org/10.1016/j.envres.2021.112373.
Dakal, T. C., Kumar, A., Majumdar, R. S. y Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7: 1831. https://doi.org/10.3389/fmicb.2016.01831.
Darby, E. M., Trampari, E., Siasat, P., Gaya M. S., Alav I., Webber M. A. y Blair J. M. A. (2024). Author correction: molecular mechanisms of antibiotic resistance revisited. Nature Reviews. Microbiology, 22(4): 255. https://doi.org/10.1038/s41579-024-01014-4.
Dharmaraja A. T. (2017). Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. Journal of medicinal chemistry, 60(8): 3221-3240. https://doi.org/10.1021/acs.jmedchem.6b01243.
España-Sánchez, B. L., Ávila-Orta, C. A., Padilla-Vaca, F., Neira-Velázquez, M. G., González-Morones, P., Rodríguez-González, J. A., Hernández-Hernández, E., Rangel-Serrano, A., Díaz-Barriga E., Yate, L. y Ziolo, R. F. (2014). Enhanced antibacterial activity of melt processed poly(propylene) Ag and Cu nanocomposites by argon plasma treatment. Plasma Processes and Polymers, 11(4): 353-365. https://doi.org/10.1002/ppap.201300152.
Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T. y Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(1): 103-109. https://doi.org/10.1016/j.nano.2009.04.006.
González-Vargas N. C., Mendoza-Macías C. L., Medina-Navarro L. G., Rangel-Serrano A. y Padilla-Vaca L. F. (2017). Actividad antibacteriana de nanopartículas metálicas sobre bacterias resistentes a antibióticos convencionales. Jóvenes en la Ciencia. Revista de Divulgación Científica, 3(2): 913-917.
Kamat, S. y Kumari, M. (2023). Emergence of microbial resistance against nanoparticles: Mechanisms and strategies. Frontiers in Microbiology, 14: 1102615. https://doi.org/10.3389/fmicb.2023.1102615.
Kapteijn, R., Shitut, S., Aschmann, D., Zhang, L., de Beer, M., Daviran, D., Roverts, R., Akiva, A., van Wezel, G. P., Kros, A. y Claessen, D. (2022). Endocytosis-like DNA uptake by cell wall-deficient bacteria. Nature Communications, 13(1): 5524. https://doi.org/10.1038/s41467-022-33054-w.
Liu, B., Liu, D., Chen, T., Wang, X., Xiang, H., Wang, G. y Cai, R. (2023). iTRAQ-based quantitative proteomic analysis of the antibacterial mechanism of silver nanoparticles against multidrug-resistant Streptococcus suis. Frontiers in Microbiology, 14: 1293363. https://doi.org/10.3389/fmicb.2023.1293363.
Lok C., Chen, R., He, Q., Yu, W., Sun, H., Tam, P., Chiu, J. y Che, C. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 5(4): 916-24. https://doi.org/10.1021/pr0504079.
Lluka, T. y Stokes, J. M. (2023). Antibiotic discovery in the artificial intelligence era. Annals of the New York Academy of Sciences, 1519(1): 74-93. https://doi.org/10.1111/nyas.14930.
Luna-Hernández, E., Cruz-Soto, M. E., Padilla-Vaca, F., Mauricio-Sánchez, R. A., Ramírez-Wong, D., Muñoz, R., Granados-López, L., Ovalle-Flores, L. R., Menchaca-Arredondo, J. R., Hernández-Rangel, A., Prokhorov E., García-Rivas, J. L., España-Sánchez, B. L. y Luna-Bárcenas, G. (2017). Combined antibacterial/tissue regeneration response in thermal burns promoted by functional chitosan/silver nanocomposites. International Journal of Biological Macromolecules, 105(Pt 1): 1241-49. https://doi.org/10.1016/j.ijbiomac.2017.07.159.
Martin, M. J., Stribling, W., Ong, A. C., Maybank, R., Kwak, Y. I., Rosado-Méndez, J. A., Preston, L. N., Lane, K. F., Julius, M., Jones, A. R., Hinkle, M., Waterman, P. E., Lesho, E. P., Lebreton, F., Bennett, J. W. y Mc Gann, P. T. (2023). A panel of diverse Klebsiella pneumoniae clinical isolates for research and development. Microbial Genomics, 9(5). https://doi.org/10.1099/mgen.0.000967.
McNeilly, O., Mann, R., Hamidian, M. y Gunawan, C. (2021). Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Frontiers in Microbiology, 12: 652863. https://doi.org/10.3389/fmicb.2021.65 2863.
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T. y Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10): 2346-53. https://doi.org/10.1088/0957-4484/16/10/059.
Mutuku C., Gazdag, Z., Melegh, S. (2022). Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J. Microbiol Biotechnol, 38(9): 152, 4 de julio. https://doi.org/10.1007/s11274-022-03334-0.
Nisar, P., Ali, N., Rahman, L., Ali, M. y Shinwari, Z. K. (2019). Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. Journal of Biological Inorganic Chemistry, 24(7): 929-941. https://doi.org/10.1007/s00775-019-01717-7.
Padilla-Vaca, F., Mendoza-Macías, C. L., Franco, B., Anaya-Velázquez, F., Ponce-Noyola, P. y Flores-Martínez, A. (2018). El mundo micro en el mundo nano: importancia y desarrollo de nanomateriales para el combate de las enfermedades causadas por bacterias, protozoarios y hongos. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 11(21): 15-28. https://doi.org/10.22201/ceiich.24485691e.2018.21.62591.
Patil, R. S., Sharma, S., Bhaskarwar, A. V., Nambiar, S., Bhat, N. A., Koppolu, M. K. y Bhukya, H. (2023). TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins, 93(1): 38-71. https://doi.org/10.1002/prot.26621.
Peterson, E. y Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria and clinical pathogens. Frontiers in Microbiology, 9: 2928. https://doi.org/10.3389/fmicb.2018.02928.
Quintero-Garrido, K. G., Ramírez‐Montiel, F. B., Chávez-Castillo, M., Reyes‐Vidal, Y., Bácame-Valenzuela, F. J., Padilla‐Vaca, F., Palma-Tirado, L., Estevez, M. y España‐Sánchez, B. L. (2023). Antibacterial behavior and bacterial resistance analysis of P. aeruginosa in contact with copper nanoparticles. Mexican Journal of Biotechnology, 8(1): 1-20. https://doi.org/10.29267/mxjb.2023.8.1.1.
Rugaie, O. A., Abdellatif, A. A. H., El-Mokhtar, M. A., Sabet, M. A., Abdelfattah, A., Alsharidah, M., Aldubaib, M., Barakat, H., Abudoleh, S. M., Al-Regaiey, K. A. y Tawfeek, H. M. (2022). Retardation of bacterial biofilm formation by coating urinary catheters with metal nanoparticle-stabilized polymers. Microorganisms, 10(7): 1297. https://doi.org/10.3390/microorganisms10071297.
Russell, B., Rogers, A., Yoder, R., Kurilich, M., Krishnamurthi, V. R., Chen, J. y Wang, Y. (2023). Silver ions inhibit bacterial movement and stall flagellar motor. International Journal of Molecular Sciences, 24(14), 11704. https://doi.org/10.3390/ijms241411704.
Ryan, M. E., Damke, P. P. y Shaffer, C. L. (2023). DNA transport through the dynamic type IV secretion system. Infection and Immunity, 91(7). https://doi.org/10.1128/iai.00436-22.
Salas-Orozco, M. F., Lorenzo-Leal, A. C., de Alba Montero, I., Marín, N. P., Santana, M. A. C. y Bach, H. (2024). Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: a systematic review. Nanomedicine: Nanotechnology, Biology, and Medicine, 55(102715): 102715. https://doi.org/10.1016/j.nano.2023.102715.
Tedesco, S., Doyle, H., Blasco, J., Redmond, G. y Sheehan, D. (2010). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology, 100(2): 178-86. https://doi.org/10.1016/j.aquatox.2010.03.001.
Wahab, S., Salman, A., Khan, Z., Khan, S., Krishnaraj, C. y Yun, S. I. 2023. Metallic nanoparticles: a promising arsenal against antimicrobial resistance-unraveling mechanisms and enhancing medication efficacy. International Journal of Molecular Sciences, 24(19): 14897. https://doi.org/10.3390/ijms241914897.
Wang, L., He, H., Yu, Y., Sun, L., Liu, S., Zhang, C. y He, L. (2014). Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. Journal of Inorganic Biochemistry, 135: 45-53. https://doi.org/10.1016/j.jinorgbio.2014.02.016.
Wang, L., Hu, C. y Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12: 1227-1249. https://doi.org/10.2147/IJN.S121956.
Webb, Glenn F., Erika M. C. D’Agata, Pierre Magal y Shigui Ruan. (2005). A model of antibiotic-resistant bacterial epidemics in hospitals. Proceedings of the National Academy of Sciences of the United States of America, 102(37): 13343-48. https://doi.org/10.1073/pnas.0504053102.
World Health Organization. (S. f.). Global antimicrobial resistance and use surveillance system (glass). https://www.who.int/initiatives/glass.
World Health Organization. (2024). WHO Bacterial priority pathogens list, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Ginebra, Suiza: World Health Organization. https://www.who.int/publications/i/item/9789240093461.
Wu, K., Li, H., Cui, X., Feng, R., Chen, W., Jiang, Y., Tang, C., Wang, Y., Wang, Y., Shen, X., Liu, Y., Lynch, M. y Long, H. (2022). Mutagenesis and resistance development of bacteria challenged by silver nanoparticles. Antimicrobial Agents and Chemotherapy, 66(10). https://doi.org/10.1128/aac.00628-22.
Yasawong, M., Wongchitrat, P., Isarankura-Na-Ayudhya, C., Isarankura-Na-Ayudhya, P. y Na Nakorn, P. (2023). Draft genome sequence data of heavy metal-resistant Morganella morganii WA01/MUTU, a silver nanoparticle (AgNP) synthesising bacterium. Data in Brief, 52: 109873. https://doi.org/10.1016/j.dib.2023.109873.
Yonathan, K., Mann, R., Mahbub, K. R. y Gunawan, C. (2022). The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. Environmental Pollution, 293: 118506. https://doi.org/10.1016/j.envpol.2021.118506.
Yu, J., Zhang, W., Li, Y., Wang, G., Yang, L., Jin, J., Chen, Q. y Huang, M. (2014). Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomedical Materials, 10(1): 015001. https://doi.org/10.1088/1748-6041/10/1/015001.
Zhang, R., Carlsson, F., Edman, M., Hummelgård, M., Jonsson, B. G., Bylund, D. y Olin, H. (2018). Escherichia coli bacteria develop adaptive resistance to antibacterial ZnO nanoparticles. Advanced Biosystems, 2(5). https://doi.org/10.1002/adbi.201800019.