Nanopartículas metálicas antimicrobianas: resistencia bacteriana, implicaciones y nuevos desafíos
Contenido principal del artículo
Resumen
l objetivo del presente trabajo es comprender la creciente amenaza que representa la resistencia bacteriana a los antibióticos convencionales, y la necesidad de abordar alternativas como lo son las NPs metálicas con una alta actividad antibacteriana. Esto incluye entender los mecanismos de resistencia desarrollados por las bacterias, tanto para antibióticos convencionales como para NPs metálicas y la amenaza de una resistencia cruzada. La resistencia bacteriana a los antibióticos convencionales representa una gran amenaza para la salud humana. Su uso inadecuado para el tratamiento de enfermedades no bacterianas y en actividades agrícolas, así como el desecho imprudente de los antibióticos ha generado un incremento de bacterias multirresistentes. Por lo anterior, es importante la búsqueda de alternativas que no solamente controlen la infección en el hospedero, sino que también eviten la diseminación de los microrganismos resistentes. Las nanopartículas metálicas han surgido como una buena alternativa por sus propiedades fisicoquímicas y su gran actividad antibacteriana, además de ser efectivas contra bacterias multirresistentes. En los últimos años se han incrementado los reportes de bacterias resistentes a nanopartículas de plata y cobre principalmente, y de los mecanismos de resistencia, lo cual tiene implicaciones relevantes, pues las nanopartículas metálicas podrían favorecer la resistencia a los antibióticos y la resistencia cruzada a metales en aguas residuales, impactando comunidades complejas de microrganismos. El uso de nanopartículas metálicas con propiedades antibacterianas va en aumento y su liberación al medio ambiente podría estar generando bacterias resistentes, por lo cual es importante considerar los aspectos regulatorios asociados con el uso extendido de nanomateriales con actividad antimicrobiana y el seguimiento de bacterias resistentes.
Descargas
Detalles del artículo

Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Aguilar-Vega, L., López-Jácome, L. E., Franco, B., Muñoz-Carranza, S., Vargas-Maya, N., Franco-Cendejas, R., Hernández-Durán, M., Otero-Zúñiga, M., Campo-Beleño, C., Jiménez-Cortés, J. G., Martínez-Vázquez, M., Rodríguez-Zavala, J. S., Maeda, T., Zurabian, R. y García-Contreras, R. (2021). Antibacterial properties of phenothiazine derivatives against multidrug-resistant Acinetobacter baumannii strains. Journal of Applied Microbiology, 131(5): 2235-43. https://doi.org/10.1111/jam.15109. DOI: https://doi.org/10.1111/jam.15109
Alhajjar, R. K., Roche, K. M. y Techtmann, S. M. (2022). Comparative analysis of the mechanism of resistance to silver nanoparticles and the Biocide 2,2-Dibromo-3-Nitrilopropionamide. Antimicrobial Agents and Chemotherapy, 66(6). https://doi.org/10.1128/aac.02031-21. DOI: https://doi.org/10.1128/aac.02031-21
Arrault, C., Monneau, Y. R., Martin, M., Cantrelle, F. X., Boll, E., Chirot, F., Comby, C., Walker, O. y Hologne, M. (2023). The battle for silver binding: how the interplay between the SilE, SilF, and SilB proteins contributes to the silver efflux pump mechanism. The Journal of Biological Chemistry, 299(8): 105004. https://doi.org/10.1016/j.jbc.2023.105004. DOI: https://doi.org/10.1016/j.jbc.2023.105004
Bombaywala, S., Purohit, H. J. y Dafale, N. A. (2021). Mobility of antibiotic resistance and its co-occurrence with metal resistance in pathogens under oxidative stress. Journal of environmental management, 297: 113315. https://doi.org/10.1016/j.jenvman.2021.113315. DOI: https://doi.org/10.1016/j.jenvman.2021.113315
Cao, M., Wang, F., Zhou, B., Chen, H., Yuan, R., Ma, S., Geng, H., Li, J., Lv, W., Wang, Y. y Xing, B. (2023). Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. Journal of hazardous materials, 443(Pt A): 130201. https://doi.org/10.1016/j.jhazmat.2022.130201. DOI: https://doi.org/10.1016/j.jhazmat.2022.130201
Christaki, E., Marcou, M. y Tofarides, A. (2019). Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. Journal of Molecular Evolution, 88(1): 26-40. https://doi.org/10.1007/s00239-019-09914-3. DOI: https://doi.org/10.1007/s00239-019-09914-3
Colín-Castro C. A., López-Jácome L. E., Rodríguez-García M. J., Garibaldi-Rojas M., Rojas-Larios F. et al. (2025). The ongoing antibiotic resistance and carbapenemase encoding genotypes surveillance. The first quarter report of the INVIFAR network for 2024. PLOS ONE, 20(4). https://doi.org/10.1371/journal.pone.0319441. DOI: https://doi.org/10.1371/journal.pone.0319441
Cui, H. y Smith, A. (2022). Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: a comprehensive review. Environmental Research, 204(PD): 112373. https://doi.org/10.1016/j.envres.2021.112373. DOI: https://doi.org/10.1016/j.envres.2021.112373
Dakal, T. C., Kumar, A., Majumdar, R. S. y Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7: 1831. https://doi.org/10.3389/fmicb.2016.01831. DOI: https://doi.org/10.3389/fmicb.2016.01831
Darby, E. M., Trampari, E., Siasat, P., Gaya M. S., Alav I., Webber M. A. y Blair J. M. A. (2024). Author correction: molecular mechanisms of antibiotic resistance revisited. Nature Reviews. Microbiology, 22(4): 255. https://doi.org/10.1038/s41579-024-01014-4. DOI: https://doi.org/10.1038/s41579-024-01014-4
Dharmaraja A. T. (2017). Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. Journal of medicinal chemistry, 60(8): 3221-3240. https://doi.org/10.1021/acs.jmedchem.6b01243. DOI: https://doi.org/10.1021/acs.jmedchem.6b01243
España-Sánchez, B. L., Ávila-Orta, C. A., Padilla-Vaca, F., Neira-Velázquez, M. G., González-Morones, P., Rodríguez-González, J. A., Hernández-Hernández, E., Rangel-Serrano, A., Díaz-Barriga E., Yate, L. y Ziolo, R. F. (2014). Enhanced antibacterial activity of melt processed poly(propylene) Ag and Cu nanocomposites by argon plasma treatment. Plasma Processes and Polymers, 11(4): 353-365. https://doi.org/10.1002/ppap.201300152. DOI: https://doi.org/10.1002/ppap.201300152
Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T. y Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(1): 103-109. https://doi.org/10.1016/j.nano.2009.04.006. DOI: https://doi.org/10.1016/j.nano.2009.04.006
González-Vargas N. C., Mendoza-Macías C. L., Medina-Navarro L. G., Rangel-Serrano A. y Padilla-Vaca L. F. (2017). Actividad antibacteriana de nanopartículas metálicas sobre bacterias resistentes a antibióticos convencionales. Jóvenes en la Ciencia. Revista de Divulgación Científica, 3(2): 913-917.
Kamat, S. y Kumari, M. (2023). Emergence of microbial resistance against nanoparticles: Mechanisms and strategies. Frontiers in Microbiology, 14: 1102615. https://doi.org/10.3389/fmicb.2023.1102615. DOI: https://doi.org/10.3389/fmicb.2023.1102615
Kapteijn, R., Shitut, S., Aschmann, D., Zhang, L., de Beer, M., Daviran, D., Roverts, R., Akiva, A., van Wezel, G. P., Kros, A. y Claessen, D. (2022). Endocytosis-like DNA uptake by cell wall-deficient bacteria. Nature Communications, 13(1): 5524. https://doi.org/10.1038/s41467-022-33054-w. DOI: https://doi.org/10.1038/s41467-022-33054-w
Liu, B., Liu, D., Chen, T., Wang, X., Xiang, H., Wang, G. y Cai, R. (2023). iTRAQ-based quantitative proteomic analysis of the antibacterial mechanism of silver nanoparticles against multidrug-resistant Streptococcus suis. Frontiers in Microbiology, 14: 1293363. https://doi.org/10.3389/fmicb.2023.1293363. DOI: https://doi.org/10.3389/fmicb.2023.1293363
Lok C., Chen, R., He, Q., Yu, W., Sun, H., Tam, P., Chiu, J. y Che, C. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 5(4): 916-24. https://doi.org/10.1021/pr0504079. DOI: https://doi.org/10.1021/pr0504079
Lluka, T. y Stokes, J. M. (2023). Antibiotic discovery in the artificial intelligence era. Annals of the New York Academy of Sciences, 1519(1): 74-93. https://doi.org/10.1111/nyas.14930. DOI: https://doi.org/10.1111/nyas.14930
Luna-Hernández, E., Cruz-Soto, M. E., Padilla-Vaca, F., Mauricio-Sánchez, R. A., Ramírez-Wong, D., Muñoz, R., Granados-López, L., Ovalle-Flores, L. R., Menchaca-Arredondo, J. R., Hernández-Rangel, A., Prokhorov E., García-Rivas, J. L., España-Sánchez, B. L. y Luna-Bárcenas, G. (2017). Combined antibacterial/tissue regeneration response in thermal burns promoted by functional chitosan/silver nanocomposites. International Journal of Biological Macromolecules, 105(Pt 1): 1241-49. https://doi.org/10.1016/j.ijbiomac.2017.07.159. DOI: https://doi.org/10.1016/j.ijbiomac.2017.07.159
Martin, M. J., Stribling, W., Ong, A. C., Maybank, R., Kwak, Y. I., Rosado-Méndez, J. A., Preston, L. N., Lane, K. F., Julius, M., Jones, A. R., Hinkle, M., Waterman, P. E., Lesho, E. P., Lebreton, F., Bennett, J. W. y Mc Gann, P. T. (2023). A panel of diverse Klebsiella pneumoniae clinical isolates for research and development. Microbial Genomics, 9(5). https://doi.org/10.1099/mgen.0.000967. DOI: https://doi.org/10.1099/mgen.0.000967
McNeilly, O., Mann, R., Hamidian, M. y Gunawan, C. (2021). Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Frontiers in Microbiology, 12: 652863. https://doi.org/10.3389/fmicb.2021.65 2863. DOI: https://doi.org/10.3389/fmicb.2021.652863
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T. y Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10): 2346-53. https://doi.org/10.1088/0957-4484/16/10/059. DOI: https://doi.org/10.1088/0957-4484/16/10/059
Mutuku C., Gazdag, Z., Melegh, S. (2022). Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J. Microbiol Biotechnol, 38(9): 152, 4 de julio. https://doi.org/10.1007/s11274-022-03334-0. DOI: https://doi.org/10.1007/s11274-022-03334-0
Nisar, P., Ali, N., Rahman, L., Ali, M. y Shinwari, Z. K. (2019). Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. Journal of Biological Inorganic Chemistry, 24(7): 929-941. https://doi.org/10.1007/s00775-019-01717-7. DOI: https://doi.org/10.1007/s00775-019-01717-7
Padilla-Vaca, F., Mendoza-Macías, C. L., Franco, B., Anaya-Velázquez, F., Ponce-Noyola, P. y Flores-Martínez, A. (2018). El mundo micro en el mundo nano: importancia y desarrollo de nanomateriales para el combate de las enfermedades causadas por bacterias, protozoarios y hongos. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 11(21): 15-28. https://doi.org/10.22201/ceiich.24485691e.2018.21.62591. DOI: https://doi.org/10.22201/ceiich.24485691e.2018.21.62591
Patil, R. S., Sharma, S., Bhaskarwar, A. V., Nambiar, S., Bhat, N. A., Koppolu, M. K. y Bhukya, H. (2023). TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins, 93(1): 38-71. https://doi.org/10.1002/prot.26621. DOI: https://doi.org/10.1002/prot.26621
Peterson, E. y Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria and clinical pathogens. Frontiers in Microbiology, 9: 2928. https://doi.org/10.3389/fmicb.2018.02928. DOI: https://doi.org/10.3389/fmicb.2018.02928
Quintero-Garrido, K. G., Ramírez‐Montiel, F. B., Chávez-Castillo, M., Reyes‐Vidal, Y., Bácame-Valenzuela, F. J., Padilla‐Vaca, F., Palma-Tirado, L., Estevez, M. y España‐Sánchez, B. L. (2023). Antibacterial behavior and bacterial resistance analysis of P. aeruginosa in contact with copper nanoparticles. Mexican Journal of Biotechnology, 8(1): 1-20. https://doi.org/10.29267/mxjb.2023.8.1.1. DOI: https://doi.org/10.29267/mxjb.2023.8.1.1
Rugaie, O. A., Abdellatif, A. A. H., El-Mokhtar, M. A., Sabet, M. A., Abdelfattah, A., Alsharidah, M., Aldubaib, M., Barakat, H., Abudoleh, S. M., Al-Regaiey, K. A. y Tawfeek, H. M. (2022). Retardation of bacterial biofilm formation by coating urinary catheters with metal nanoparticle-stabilized polymers. Microorganisms, 10(7): 1297. https://doi.org/10.3390/microorganisms10071297. DOI: https://doi.org/10.3390/microorganisms10071297
Russell, B., Rogers, A., Yoder, R., Kurilich, M., Krishnamurthi, V. R., Chen, J. y Wang, Y. (2023). Silver ions inhibit bacterial movement and stall flagellar motor. International Journal of Molecular Sciences, 24(14), 11704. https://doi.org/10.3390/ijms241411704. DOI: https://doi.org/10.3390/ijms241411704
Ryan, M. E., Damke, P. P. y Shaffer, C. L. (2023). DNA transport through the dynamic type IV secretion system. Infection and Immunity, 91(7). https://doi.org/10.1128/iai.00436-22. DOI: https://doi.org/10.1128/iai.00436-22
Salas-Orozco, M. F., Lorenzo-Leal, A. C., de Alba Montero, I., Marín, N. P., Santana, M. A. C. y Bach, H. (2024). Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: a systematic review. Nanomedicine: Nanotechnology, Biology, and Medicine, 55(102715): 102715. https://doi.org/10.1016/j.nano.2023.102715. DOI: https://doi.org/10.1016/j.nano.2023.102715
Tedesco, S., Doyle, H., Blasco, J., Redmond, G. y Sheehan, D. (2010). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology, 100(2): 178-86. https://doi.org/10.1016/j.aquatox.2010.03.001. DOI: https://doi.org/10.1016/j.aquatox.2010.03.001
Wahab, S., Salman, A., Khan, Z., Khan, S., Krishnaraj, C. y Yun, S. I. 2023. Metallic nanoparticles: a promising arsenal against antimicrobial resistance-unraveling mechanisms and enhancing medication efficacy. International Journal of Molecular Sciences, 24(19): 14897. https://doi.org/10.3390/ijms241914897. DOI: https://doi.org/10.3390/ijms241914897
Wang, L., He, H., Yu, Y., Sun, L., Liu, S., Zhang, C. y He, L. (2014). Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. Journal of Inorganic Biochemistry, 135: 45-53. https://doi.org/10.1016/j.jinorgbio.2014.02.016. DOI: https://doi.org/10.1016/j.jinorgbio.2014.02.016
Wang, L., Hu, C. y Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12: 1227-1249. https://doi.org/10.2147/IJN.S121956. DOI: https://doi.org/10.2147/IJN.S121956
Webb, Glenn F., Erika M. C. D’Agata, Pierre Magal y Shigui Ruan. (2005). A model of antibiotic-resistant bacterial epidemics in hospitals. Proceedings of the National Academy of Sciences of the United States of America, 102(37): 13343-48. https://doi.org/10.1073/pnas.0504053102. DOI: https://doi.org/10.1073/pnas.0504053102
World Health Organization. (S. f.). Global antimicrobial resistance and use surveillance system (glass). https://www.who.int/initiatives/glass.
World Health Organization. (2024). WHO Bacterial priority pathogens list, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Ginebra, Suiza: World Health Organization. https://www.who.int/publications/i/item/9789240093461.
Wu, K., Li, H., Cui, X., Feng, R., Chen, W., Jiang, Y., Tang, C., Wang, Y., Wang, Y., Shen, X., Liu, Y., Lynch, M. y Long, H. (2022). Mutagenesis and resistance development of bacteria challenged by silver nanoparticles. Antimicrobial Agents and Chemotherapy, 66(10). https://doi.org/10.1128/aac.00628-22. DOI: https://doi.org/10.1128/aac.00628-22
Yasawong, M., Wongchitrat, P., Isarankura-Na-Ayudhya, C., Isarankura-Na-Ayudhya, P. y Na Nakorn, P. (2023). Draft genome sequence data of heavy metal-resistant Morganella morganii WA01/MUTU, a silver nanoparticle (AgNP) synthesising bacterium. Data in Brief, 52: 109873. https://doi.org/10.1016/j.dib.2023.109873. DOI: https://doi.org/10.1016/j.dib.2023.109873
Yonathan, K., Mann, R., Mahbub, K. R. y Gunawan, C. (2022). The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. Environmental Pollution, 293: 118506. https://doi.org/10.1016/j.envpol.2021.118506. DOI: https://doi.org/10.1016/j.envpol.2021.118506
Yu, J., Zhang, W., Li, Y., Wang, G., Yang, L., Jin, J., Chen, Q. y Huang, M. (2014). Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomedical Materials, 10(1): 015001. https://doi.org/10.1088/1748-6041/10/1/015001. DOI: https://doi.org/10.1088/1748-6041/10/1/015001
Zhang, R., Carlsson, F., Edman, M., Hummelgård, M., Jonsson, B. G., Bylund, D. y Olin, H. (2018). Escherichia coli bacteria develop adaptive resistance to antibacterial ZnO nanoparticles. Advanced Biosystems, 2(5). https://doi.org/10.1002/adbi.201800019. DOI: https://doi.org/10.1002/adbi.201800019