Diminutas pero poderosas: influencia de las nanopartículas de plata en el cerebro e intestino
Contenido principal del artículo
Resumen
Derivado de la creciente incorporación de nanopartículas de plata (AgNPs) en el uso de productos como empaques alimentarios, fármacos, cosméticos, alimentos y bebidas, principalmente por sus propiedades antimicrobianas, el presente trabajo de revisión analiza de manera integrativa el impacto potencial de estas nanopartículas (NPs) en sitios blanco como el sistema nervioso central (SNC) y el intestino delgado (ID), enfatizando mecanismos de toxicidad inducidos por AgNPs. Se abordan efectos a nivel cerebral sobre la barrera hematoencefálica (BHE), cerebelo, astrocitos, células de glioblastoma, así como en el ID y su microbiota, explorando su relación con procesos inflamatorios, formación de especies reactivas de oxígeno (ROS), expresión de proteínas como metalotioneínas (MTs), claudina-5 y otros mediadores celulares. Se destaca que características como el método de síntesis, tamaño, concentración y dosis de las AgNPs son determinantes en sus efectos benéficos o adversos. Esta revisión resalta también la necesidad de establecer marcos regulatorios sólidos para su uso seguro y promueve un enfoque multidisciplinario para evaluar de manera integral los riesgos y beneficios asociados con el uso de AgNPs, así como alianzas globales que garanticen su implementación segura y efectiva hacia un futuro más responsable y sostenible.
Descargas
Detalles del artículo

Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Abdifetah, Omar y Kesara Na-Bangchang. (2019). Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: a systematic review. International Journal of Nanomedicine, 14: 5659-77. https://doi.org/10.2147/IJN.S213229. DOI: https://doi.org/10.2147/IJN.S213229
Agus, Allison, Karine Clément y Harry Sokol. (2021). Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut, 70(6): 1174-82. https://doi.org/10.1136/gutjnl-2020-323071. DOI: https://doi.org/10.1136/gutjnl-2020-323071
Augustine, Robin, Anwarul Hasan, Rosita Primavera, Rudilyn Joyce Wilson, Avnesh S. Thakor y Bhavesh D. Kevadiya. (2020). Cellular uptake and retention of nanoparticles: insights on particle properties and interaction with cellular components. Materials Today Communications, 25(agosto): 101692. https://doi.org/10.1016/j.mtcomm.2020.101692. DOI: https://doi.org/10.1016/j.mtcomm.2020.101692
Barhoum, Ahmed, María Luisa García-Betancourt, Jaison Jeevanandam, Eman A. Hussien, Sara A. Mekkawy, Menna Mostafa, Mohamed M. Omran, Mohga S. Abdalla y Mikhael Bechelany. (2022). Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials, 12(2): 177. https://doi.org/10.3390/nano12020177. DOI: https://doi.org/10.3390/nano12020177
Bauer, Kylynda C., Tobias Rees y Barton Brett Finlay. (2019). The gut microbiota — Brain axis expands neurologic function: a nervous rapport. BioEssays, 41(10): 1800268. https://doi.org/10.1002/bies.201800268. DOI: https://doi.org/10.1002/bies.201800268
Behzadi, Shahed, Serpooshan, Vahid, Tao, Wei, Hamaly, Majd A., Alkawareek, Mahmoud Y., Draden, Erick C., Brown, Dennis, Alkilany, Alaaldin M., Farokhzad, Omid C. y Mahmoudi, Morteza. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 46(14): 4218-4244. https://doi.org/10.1039/C6CS00636A. DOI: https://doi.org/10.1039/C6CS00636A
Bertrand, Paul P. y Rebecca L. Bertrand. (2010). Serotonin release and uptake in the gastrointestinal tract. Autonomic Neuroscience, 153(1-2): 47-57. https://doi.org/10.1016/j.autneu.2009.08.002. DOI: https://doi.org/10.1016/j.autneu.2009.08.002
Breit, Sigrid, Aleksandra Kupferberg, Gerhard Rogler y Gregor Hasler. (2018). Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Frontiers in Psychiatry, 9(marzo). https://doi.org/10.3389/fpsyt.2018.00044. DOI: https://doi.org/10.3389/fpsyt.2018.00044
Bubenik, George A. (2002). Gastrointestinal melatonin: localization, function, and clinical relevance. Digestive Diseases and Sciences, 47(10): 2336-48. https://doi.org/10.1023/A:1020107915919. DOI: https://doi.org/10.1023/A:1020107915919
Buyana, Buhle, Tobeka Naki, Sibusiso Alven y Blessing Atim Aderibigbe. (2022). Nanoparticles loaded with platinum drugs for colorectal cancer therapy. International Journal of Molecular Sciences, 23(19): 11261. https://doi.org/10.3390/ijms231911261. DOI: https://doi.org/10.3390/ijms231911261
Cabral de Sá Leitao Oliveira, Ana Luiza, Raimundo Fernandes de Araújo Júnior, Thaís Gomes de Carvalho, Alan B. Chan, Timo Schomann, Filippo Tamburini, Lioe-Fee de Geus-Oei y Luis J. Cruz. (2020). Effect of oxaliplatin-loaded poly (d,l-lactide-Co-glycolic acid) (PLGA) nanoparticles combined with retinoic acid and cholesterol on apoptosis, drug resistance, and metastasis factors of colorectal cancer. Pharmaceutics, 12(2): 193. https://doi.org/10.3390/pharmaceutics12020193. DOI: https://doi.org/10.3390/pharmaceutics12020193
Chávez-Hernández, Jorge Antonio, Beatriz Liliana España-Sánchez, Patricia Aguirre-Bañuelos, Lucero Granados-López, Aída Jimena Velarde-Salcedo, Gabriel Luna-Bárcenas y Carmen González. (2024a). Physiological evaluation of PVP-coated AgNP in the rat small intestine: an ex vivo approach. Frontiers in Nanotechnology, 6(junio): 1-16. https://doi.org/10.3389/fnano.2024.1386312. DOI: https://doi.org/10.3389/fnano.2024.1386312
Chávez-Hernández, Jorge Antonio, Aída Jimena Velarde-Salcedo, Gabriela Navarro-Tovar y Carmen González. (2024b). Safe nanomaterials: from their use, application, and disposal to regulations. Nanoscale Advances, 6(6): 1583-1610. https://doi.org/10.1039/D3NA01097J. DOI: https://doi.org/10.1039/D3NA01097J
Chávez-Hernández, Jorge Antonio y Carmen González. (2024c). Las rutas del triptófano. Elementos, 136: 71-77.
Choi, Hye Kyu, Jin Ha Choi y Jinho Yoon. (2023). An updated review on electrochemical nanobiosensors for neurotransmitter detection. Biosensors. https://doi.org/10.3390/bios13090892. DOI: https://doi.org/10.3390/bios13090892
Constantin, Marieta, Mihail Lupei, Sanda Maria Bucatariu, Irina Mihaela Pelin, Florica Doroftei, Daniela Luminita Ichim, Oana Maria Daraba y Gheorghe Fundueanu. (2023). PVA/chitosan thin films containing silver nanoparticles and ibuprofen for the treatment of periodontal disease. Polymers, 15(1). https://doi.org/10.3390/polym15010004. DOI: https://doi.org/10.3390/polym15010004
Dada, Adewumi O., Folahan A. Adekola, Oluyomi S. Adeyemi, Oluwasesan M. Bello, Adetunji C. Oluwaseun, Oluwakemi J. Awakan y Femi-Adepoju A. Grace. (2018). Exploring the effect of operational factors and characterization imperative to the synthesis of silver nanoparticles. En Silver nanoparticles — Fabrication, characterization and applications. InTech. https://doi.org/10.5772/intechopen.76947. DOI: https://doi.org/10.5772/intechopen.76947
Dávalos Rivas, Guillermo. (2018). Biodistribución y bioacumulación de nanopartículas de plata en ratas Wistar. Papel de las metalotioneinas. Tesis de licenciatura. Universidad Autónoma de San Luis Potosí.
Dijkstra, Gerard, Harry van Goor, Peter Lm Jansen y Han Moshage. (2004). Targeting nitric oxide in the gastrointestinal tract. Current Opinion in Investigational Drugs, 5(5): 529-36.
Escobar, Alfonso y Gómez González, Beatriz. (2008). Barrera hematoencefálica. Neurobiología, implicaciones clínicas y efectos del estrés sobre su desarrollo. Revista Mexicana de Neurociencia, 9(5): 395-405.
Espinosa-Cristobal, L. F., G. A. Martínez-Castañón, J. P. Loyola-Rodríguez, N. Patiño-Marín, J. F. Reyes-Macías, J. M. Vargas-Morales y Facundo Ruiz. (2013). Toxicity, distribution, and accumulation of silver nanoparticles in Wistar rats. Journal of Nanoparticle Research, 15(6): 1702. https://doi.org/10.1007/s11051-013-1702-6. DOI: https://doi.org/10.1007/s11051-013-1702-6
Evrensel, Alper, Barış Önen Ünsalver y Mehmet Emin Ceylan. (2020). Immune-kynurenine pathways and the gut microbiota-brain axis in anxiety disorders. Advances in Experimental Medicine and Biology, 1191: 155-67. https://doi.org/10.1007/978-981-32-9705-0_10. DOI: https://doi.org/10.1007/978-981-32-9705-0_10
Gallego, Diana, Noemí Mañé, Víctor Gil, Miriam Martínez-Cutillas y Marcel Jiménez. (2016). Mecanismos responsables de la relajación neuromuscular en el tracto gastrointestinal. Revista Española de Enfermedades Digestivas. https://doi.org/10.17235/reed.2016.4058/2016.
Gao, Jing, Kang Xu, Hongnan Liu, Gang Liu, Miaomiao Bai, Can Peng, Tiejun Li y Yulong Yin. (2018). Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Frontiers in Cellular and Infection Microbiology, 8(febrero): 1-22. https://doi.org/10.3389/fcimb.2018.00013. DOI: https://doi.org/10.3389/fcimb.2018.00013
Gómez Bustamante, David Emmanuel. (2017). Síntesis, caracterización y evaluación biológica de liposomas para la liberación dirigida de un fármaco antitumoral al sistema nervioso central. Tesis de licenciatura. Universidad Autónoma de San Luis Potosí.
Guo, Jianfeng, Zhuo Yu, Manisit Das y Leaf Huang. (2020). Nano codelivery of oxaliplatin and folinic acid achieves synergistic chemo-immunotherapy with 5-fluorouracil for colorectal cancer and liver metastasis. ACS Nano, 14(4): 5075-89. https://doi.org/10.1021/acsnano.0c01676. DOI: https://doi.org/10.1021/acsnano.0c01676
Gurnani, Patrik, Sánchez-Cano, Carlos, Xandri-Monje, Helena, Zhang, Junliang, Ellacot, Sean H., Mansfield, Edward D. H., Hartlieb, Matthias, Dallmann, Robert y Perrier, Sébastien. (2022). Probing the effect of rigidity on the cellular uptake of core-shell nanoparticles: stiffness effects are size dependent. Small, 18(38): 2203070. https://doi.org/10.1002/smll.202203070. DOI: https://doi.org/10.1002/smll.202203070
Hasler, William L. (2009). Serotonin and the GI tract. Current Gastroenterology Reports, 11(5): 383-91. https://doi.org/10.1007/s11894-009-0058-7. DOI: https://doi.org/10.1007/s11894-009-0058-7
Hernández Loredo, Norma Estela. (2018). Ensamble y estudio fisicoquímico de liposomas de una mezcla bioactiva de ácido linoleico conjugado como vehículo de fármacos antitumorales. Tesis de licenciatura. Universidad Autónoma de San Luis Potosí.
Hersh, Andrew M., Safwan Alomari y Betty M. Tyler. (2022). Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. International Journal of Molecular Sciences, 23(8): 4153. https://doi.org/10.3390/ijms23084153. DOI: https://doi.org/10.3390/ijms23084153
Hochvaldova, Lucie, Gernot Posselt, Silja Wessler, Libor Kvítek y Aleš Panáček. (2024). Implications of silver nanoparticles for H. pylori infection: modulation of CagA function and signaling. Frontiers in Cellular and Infection Microbiology, 14(junio): 1-11. https://doi.org/10.3389/fcimb.2024.1419568. DOI: https://doi.org/10.3389/fcimb.2024.1419568
Islam, Md Anwarul, Mohan V. Jacob y Elsa Antunes. (2021). A critical review on silver nanoparticles: from synthesis and applications to its mitigation through low-cost adsorption by biochar. Journal of Environmental Management, 281(julio 2020): 111918. https://doi.org/10.1016/j.jenvman.2020.111918. DOI: https://doi.org/10.1016/j.jenvman.2020.111918
Istiqola, Arsi y Achmad Syafiuddin. (2020). A review of silver nanoparticles in food packaging technologies: regulation, methods, properties, migration, and future challenges. Journal of the Chinese Chemical Society, 67(11): 1942-56. https://doi.org/10.1002/jccs.202000179. DOI: https://doi.org/10.1002/jccs.202000179
Keller, Arturo A., Alex Ehrens, Yuanfang Zheng y Bernd Nowack. (2023). Developing trends in nanomaterials and their environmental implications. Nature Nanotechnology, 18(8): 834-37. https://doi.org/10.1038/s41565-023-01409-z. DOI: https://doi.org/10.1038/s41565-023-01409-z
Lamas, Bruno, Natalia Martins Breyner y Eric Houdeau. (2020). Impacts of foodborne inorganic nanoparticles on the gut microbiota — Immune axis: potential consequences for host health. Particle and Fibre Toxicology, 17(1): 19. https://doi.org/10.1186/s12989-020-00349-z. DOI: https://doi.org/10.1186/s12989-020-00349-z
Li, Juanjuan, Ruitao Cha, Xiaohui Zhao, Hongbo Guo, Huize Luo, Mingzheng Wang, Fengshan Zhou y Xingyu Jiang. (2019). Gold nanoparticles cure bacterial infection with benefit to intestinal microflora. ACS Nano, 13(5): 5002-14. https://doi.org/10.1021/acsnano.9b01002. DOI: https://doi.org/10.1021/acsnano.9b01002
Liu, Li, Tao Chen, Liping Han, Zhuo Qian, Junpeng Li and Guoyou Gan. (2024). Thermally conductive silver adhesive enhanced by MXene@AgNPs with excellent thermal conductivity for thermal management applications. Applied Surface Science, 672(noviembre): 160787. https://doi.org/10.1016/j.apsusc.2024.160787. DOI: https://doi.org/10.1016/j.apsusc.2024.160787
Long, Dingpei y Didier Merlin. (2021). Micro- and nanotechnological delivery platforms for treatment of dysbiosis-related inflammatory bowel disease. Nanomedicine, 16(20): 1741-45. https://doi.org/10.2217/nnm-2021-0167. DOI: https://doi.org/10.2217/nnm-2021-0167
Lopes, Isabela Santos, Márcio Yee, Sonia Hatsue Tatumi, Vitor Gonçalves Vital, Lucas Furlaneto de Lima, Suzan Pantaroto de Vasconcellos y Lilia Coronato Courrol. (2024). GABA functionalized gold, silver, and copper nanoparticles: synthesis, characterization and potential applications. Journal of Drug Delivery Science and Technology, 92(febrero): 105386. https://doi.org/10.1016/j.jddst.2024.105386. DOI: https://doi.org/10.1016/j.jddst.2024.105386
Lyu, Zhen, Shreya Ghoshdastidar, Karamkolly R. Rekha, Dhananjay Suresh, Jiude Mao, Nathan Bivens, Raghuraman Kannan, Trupti Joshi, Cheryl S. Rosenfeld y Anandhi Upendran. (2021). Developmental exposure to silver nanoparticles leads to long term gut dysbiosis and neurobehavioral alterations. Scientific Reports, 11(1): 1-14. https://doi.org/10.1038/s41598-021-85919-7. DOI: https://doi.org/10.1038/s41598-021-85919-7
Makkar, Sanya y Ikbal Shah. (2023). Fidaxomicin-loaded silver nanoparticles: a synergistic strategy against multidrug-resistant clostridium difficile. African Journal of Biological Sciences, 5(4): 1-10. https://doi.org/10.48047/AFJBS.5.4.2023.333-346.
Martínez-Sanmiguel, Juan J., Diana G. Zarate-Triviño, René Hernández-Delgadillo, Astrid L. Giraldo-Betancur, Nayely Pineda-Aguilar, Sergio A. Galindo-Rodríguez, Moisés A. Franco-Molina, Sara P. Hernández-Martínez y Cristina Rodríguez-Padilla. (2019). Anti-inflammatory and antimicrobial activity of bioactive hydroxyapatite/silver nanocomposites. Journal of Biomaterials Applications, 33(10): 1314-26. https://doi.org/10.1177/0885328219835995. DOI: https://doi.org/10.1177/0885328219835995
Mittal, Rahul, Luca H. Debs, Amit P. Patel, Desiree Nguyen, Kunal Patel, Gregory O’Connor, M’hamed Grati et al. (2017). Neurotransmitters: the critical modulators regulating gut–brain axis. Journal of Cellular Physiology, 232(9): 2359-72. https://doi.org/10.1002/jcp.25518. DOI: https://doi.org/10.1002/jcp.25518
McGillicuddy, E., I. Murray, S. Kavanagh, L. Morrison, A. Fogarty, M. Cormican, P. Dockery, M. Prendergast, N. Rowan y D. Morris. (2017). Silver nanoparticles in the environment: sources, detection and ecotoxicology. Science of the Total Environment, 575(enero): 231-246. https://doi.org/10.1016/j.scitotenv.2016.10.041. DOI: https://doi.org/10.1016/j.scitotenv.2016.10.041
More, Pragati R., Pandit, Santosh, De Filippis, Anna, Franci, Gianluigi, Mijakovic, Ivan y Galdiero, Massimiliano. (2023). Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms, 11(2): 369. https://doi.org/10.3390/microorganisms11020369. DOI: https://doi.org/10.3390/microorganisms11020369
Naeem, Muhammad, Wooseong Kim, Jiafu Cao, Yunjin Jung y Jin-Wook Yoo. (2014). Enzyme/pH dual sensitive polymeric nanoparticles for targeted drug delivery to the inflamed colon. Colloids and Surfaces B: Biointerfaces, 123(noviembre): 271-78. https://doi.org/10.1016/j.colsurfb.2014.09.026. DOI: https://doi.org/10.1016/j.colsurfb.2014.09.026
Nanotherm. (2024). Nanotherm therapeutics has developed an integrated suite of technologies to precisely treat solid tumors: the Nanotherm Therapy System (NTTS). 2024. https://www.nanothermtx.com/.
Nawaz, Afrah, Syed Mohsin Ali, Nosheen Fatima Rana, Tahreem Tanweer, Amna Batool, Thomas J. Webster, Farid Menaa et al. (2021). Ciprofloxacin-loaded gold nanoparticles against antimicrobial resistance: an in vivo assessment. Nanomaterials, 11(11): 3152. https://doi.org/10.3390/nano11113152. DOI: https://doi.org/10.3390/nano11113152
Nordquist, Niklas y Lars Oreland. (2010). Serotonin, genetic variability, behaviour, and psychiatric disorders — A review. Upsala Journal of Medical Sciences, 115(1): 2-10. https://doi.org/10.3109/03009730903573246. DOI: https://doi.org/10.3109/03009730903573246
OMS. (2024). Objetivos de Desarrollo Sustentable. 2024. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/.
Olivieri, Paulo H., Jesús, Marcelo B., Nader, Helena B., Justo, Giselle Z. y Souza, Alioscka A. (2022). Cell-surfaces glycosaminoglycans regulate the celular uptake of charged plystyrene nanoparticles. Nanoscale, 14: 7350-7363. https://doi.org/10.1039/D1NR07279J. DOI: https://doi.org/10.1039/D1NR07279J
Ortega-Berlanga, Benita, Carmen González y Gabriela Navarro-Tovar. (2021). Recent advances in the use of lipid-based nanoparticles against glioblastoma multiforme. Archivum Immunologiae et Therapiae Experimentalis, 69(1): 8. https://doi.org/10.1007/s00005-021-00609-6. DOI: https://doi.org/10.1007/s00005-021-00609-6
Osborne, Olivia J., Sijie Lin, Chong Hyun Chang, Zhaoxia Ji, Xuechen Yu, Xiang Wang, Shuo Lin, Tian Xia y André E. Nel. (2015). Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano, 9(10): 9573-84. https://doi.org/10.1021/acsnano.5b04583. DOI: https://doi.org/10.1021/acsnano.5b04583
Petersen, Elijah J. y Bryant C. Nelson. (2010). Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Analytical and Bioanalytical Chemistry, 398(2): 613-50. https://doi.org/10.1007/s00216-010-3881-7. DOI: https://doi.org/10.1007/s00216-010-3881-7
Provenzale, J. M. y G. A. Silva. (2009). Uses of nanoparticles for central nervous system imaging and therapy. American Journal of Neuroradiology, 30(7): 1293-1301. https://doi.org/10.3174/ajnr.A1590. DOI: https://doi.org/10.3174/ajnr.A1590
Ramírez-Lee, Manuel A., Héctor Rosas-Hernández, Samuel Salazar-García, José Manuel Gutiérrez-Hernández, Ricardo Espinosa-Tanguma, Francisco J. González, Syed F. Ali y Carmen González. (2014). Silver nanoparticles induce anti-proliferative effects on airway smooth muscle cells. Role of nitric oxide and muscarinic receptor signaling pathway. Toxicology Letters, 224(2): 246-56. https://doi.org/10.1016/j.toxlet.2013.10.027. DOI: https://doi.org/10.1016/j.toxlet.2013.10.027
Romero-Trujillo, Jorge Oswaldo, Nadine Frank-Márquez, Roberto Cervantes-Bustamante, José Francisco Cadena-León, Ericka Montijo-Barrios, Flora Zárate-Mondragón, Josefina Monserrat Cazares-Méndez y Jaime Ramírez-Mayans. (2012). Sistema nervioso entérico y motilidad gastrointestinal. Acta Pediátrica de México, 33(4): 207-14. file:///C:/Users/Usuario/Downloads/digestivofarmaco2022.pdf.
Salazar-García, Samuel, Norma Laura Delgado-Buenrostro, Juan Carlos Rodríguez-Escamilla, Guillermo Dávalos-Rivas, Yolanda Irasema Chirino, Claudia G. Castillo Martín del Campo, Gabriel A. Martínez-Castañón, Juan Manuel Vargas-Morales y Carmen González. (2019). Zinc protects the rat brain from damage induced by 24 h exposure to silver nanoparticles. Journal of Nanoparticle Research, 21(8). https://doi.org/10.1007/s11051-019-4616-0. DOI: https://doi.org/10.1007/s11051-019-4616-0
Salazar-García, Samuel, José Fernando García-Rodrigo, Norma Laura Delgado Buenrostro, Gabriel Alejandro Martínez Castañón, Beatriz Liliana España Sánchez, Yolanda Irasema Chirino y Carmen González. (2022). Zinc chloride through N-cadherin upregulation prevents the damage induced by silver nanoparticles in rat cerebellum. Journal of Nanoparticle Research, 24(8): 169. https://doi.org/10.1007/s11051-022-05541-0. DOI: https://doi.org/10.1007/s11051-022-05541-0
Salazar-García, Samuel, José Fernando García-Rodrigo, Gabriel A. Martínez-Castañón, Víctor Manuel Ruiz-Rodríguez, Diana Patricia Portales-Pérez y Carmen González. (2020). Silver nanoparticles (AgNPs) and zinc chloride (ZnCl2) exposure order determines the toxicity in C6 rat glioma cells. Journal of Nanoparticle Research, 22(9): 1-13. https://doi.org/10.1007/s11051-020-04984-7. DOI: https://doi.org/10.1007/s11051-020-04984-7
Salazar-García, Samuel, Ana Sonia Silva-Ramírez, Manuel A. Ramírez-Lee, Héctor Rosas-Hernández, Edgar Rangel-López, Claudia G. Castillo, Abel Santamaría, Gabriel A. Martínez-Castañón y Carmen González. (2015). Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs). Journal of Nanoparticle Research, 17(11): 1-13. https://doi.org/10.1007/s11051-015-3257-1. DOI: https://doi.org/10.1007/s11051-015-3257-1
Schepper, H. U. De, J. G. De Man, T. G. Moreels, P. A. Pelksmans y B. Y. De Winter. (2008). Review article: Gastrointestinal sensory and motor disturbances in inflammatory bowel disease — Clinical relevance and pathophysiological mechanisms. Alimentary Pharmacology & Therapeutics, 27(8): 621-37. https://doi.org/10.1111/j.1365-2036.2008.03624.x. DOI: https://doi.org/10.1111/j.1365-2036.2008.03624.x
Seidu, Theodora A., Kutoka, Perpetua T., Asante, Dorothy O., Farooq, Muhammad A., Alolga, Raphael N. y Bo, Wang. (2022). Functionalization of nanoparticulate drug delivery systems and its influence in cancer therapy. Pharmaceutics, 14(5): 1113. https://doi.org/10.3390/pharmaceutics14051113. DOI: https://doi.org/10.3390/pharmaceutics14051113
Silva-Ramírez, Ana S., Claudia G. Castillo, Gabriela Navarro-Tovar, Hilda M. González-Sánchez, Alejandro Rocha-Uribe, Marco M. González-Chávez, Abel Santamaría, Edgar Rangel-López y Carmen González. (2018). Bioactive isomers of conjugated linoleic acid inhibit the survival of malignant glioblastoma cells but not primary astrocytes. European Journal of Lipid Science and Technology, 120(11): 1700454. https://doi.org/10.1002/ejlt.201700454. DOI: https://doi.org/10.1002/ejlt.201700454
Soares, Sara, João Sousa, Alberto Pais y Carla Vitorino. (2018). Nanomedicine: principles, properties, and regulatory issues. Frontiers in Chemistry, 6(agosto): 1-15. https://doi.org/10.3389/fchem.2018.00360. DOI: https://doi.org/10.3389/fchem.2018.00360
Spencer, Nick J. y Hongzhen Hu. (2020). Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nature Reviews Gastroenterology and Hepatology. https://doi.org/10.1038/s41575-020-0271-2. DOI: https://doi.org/10.1038/s41575-020-0271-2
Statnano. 2023. Nanotechnology products database. (2023). https://product.statnano.com/.
Strandwitz, Philip. 2018. Neurotransmitter modulation by the gut microbiota. Brain Research, 1693(5): 128-33. https://doi.org/10.1016/j.brainres.2018.03.015. DOI: https://doi.org/10.1016/j.brainres.2018.03.015
Strandwitz, Philip, Ki Hyn Kim, Darya Terekhova, Joanne K. Liu, Anukriti Sharma, Jennifer Levering, Daniel McDonald, David Dietrich, Timothy R. Ramadhar, Asama Lekbua, Nader Mroue, Conor Liston, Eric J. Stewart, Marc J. Dubin, Karsten Zengler, Rob Knight, Jack A. Gilbert, Jon Clardy and Kim Lewis. (2018). GABA-modulating bacteria of the human gut microbiota. Nature Microbiology, 4(3): 396-403. https://doi.org/10.1038/s41564-018-0307-3. DOI: https://doi.org/10.1038/s41564-018-0307-3
Wei, Limin, Longquan Shao, Xiaoli Feng, Aijie Chen, Yanli Zhang y Jianfeng Wang. (2015). Central nervous system toxicity of metallic nanoparticles. International Journal of Nanomedicine, 10(julio): 4321. https://doi.org/10.2147/IJN.S78308. DOI: https://doi.org/10.2147/IJN.S78308
WHO. (1996). Silver in drinking-water. Guidelines for drinking-water quality. Vol. 2. Ginebra, Suiza.
Wijnhoven, Susan W. P., Willie J. G. M. Peijnenburg, Carla A. Herberts, Werner I. Hagens, Agnes G. Oomen, Evelyn H. W. Heugens, Boris Roszek et al. (2009). Nano-silver — A review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3(2): 109-38. https://doi.org/10.1080/17435390902725914. DOI: https://doi.org/10.1080/17435390902725914
Yin, Li, Fan Yang, Xin Bao, Wenhua Xue, Zhipeng Du, Xinyu Wang, Jinxuan Cheng et al. (2023). Low-temperature sintering of Ag nanoparticles for high-performance thermoelectric module design. Nature Energy, 8(7): 665-74. https://doi.org/10.1038/s41560-023-01245-4. DOI: https://doi.org/10.1038/s41560-023-01245-4
Yousef, Mokhtar, Abdelsalam Abuzreda y Maher Kamel. (2019). Cardiotoxicity and lung toxicity in male rats induced by long‑term exposure to iron oxide and silver nanoparticles. Experimental and Therapeutic Medicine, octubre: 4329-39. https://doi.org/10.3892/etm.2019.8108. DOI: https://doi.org/10.3892/etm.2019.8108
Yu, Chuyue D., Qian J. Xu y Rui B. Chang. (2020). Vagal sensory neurons and gut-brain signaling. Current Opinion in Neurobiology, 62: 133-40, figura 1. https://doi.org/10.1016/j.conb.2020.03.006. DOI: https://doi.org/10.1016/j.conb.2020.03.006
Yue, Ning-ning, Hao-ming Xu, Jing Xu, Min-heng Zhu, Yuan Zhang, Cheng-Mei Tian, Yu-qiang Nie et al. (2023). Application of nanoparticles in the diagnosis of gastrointestinal diseases: a complete future perspective. International Journal of Nanomedicine, 18(marzo 2023): 4143-70. https://doi.org/10.2147/IJN.S413141. DOI: https://doi.org/10.2147/IJN.S413141