Modelos cinéticos para evaluar la liberación controlada de fármacos desde exosomas
Contenido principal del artículo
Resumen
Los exosomas son vesículas de tamaño nanométrico vislumbradas como potenciales vehículos de entrega de fármacos en mamíferos y en plantas. Al igual que los sistemas farmacéuticos, los exosomas necesitan mantener atributos de calidad que permitan su adecuado desempeño farmacocinético y farmacodinámico para producir el efecto terapéutico deseado. Estos mismos atributos, tales como la distribución de tamaño, el potencial zeta, la integridad de la membrana, entre otros, permiten asegurar la capacidad de los eventos de fusión o la internalización de los exosomas en la célula diana, no obstante, los exosomas empleados como vehículos farmacéuticos también deben demostrar otros atributos como un adecuado perfil de liberación del fármaco. Este proceso de entrega del fármaco es guiado por los fenómenos difusivos, la gradual erosión de la membrana y la permeabilidad del fármaco a través de la bicapa lipídica. Para identificar la contribución de cada mecanismo sobre la liberación de fármacos son imprescindibles las evaluaciones in vitro. En esta revisión, discutimos sobre los resultados cinéticos de diferentes reportes sobre formulaciones con exosomas y mostramos su relación con los métodos preparación exosoma-fármaco. Finalmente, observamos que los perfiles de liberación de fármacos desde los exosomas se ajustan a los modelos de Higuchi, Korsmeyer-Peppas y Weibull.
Descargas
Detalles del artículo

Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Ambardekar, R., Mahadik, K., Paradkar, A., Harsulkar, A. (2012). Enhancement of hepatoprotective efficacy of propolis by fabrication of liposomes, as a platform nano-formulation for multi-component natural medicine. Current Drug Delivery, 9:477-86. https://doi.org/10.2174/156720112802650653. DOI: https://doi.org/10.2174/156720112802650653
Andreetta, H. A. (2003). Fármacos de acción prolongada: mecanismos de liberación. Usos de distintos modelos. Acta Farmacéutica Bonaerense, 22(4): 355-64.
Athmakuri, K., Padala, C., Litt, J., Cole, R., Kumar, S., Kane, R. (2010). Controlling DNA adsorption and diffusion on lipid bilayers by the formation of lipid domains. Langmuir: The ACS Journal of Surfaces and Colloids, 26: 397-401. https://doi.org/10.1021/la902222g. DOI: https://doi.org/10.1021/la902222g
Ayala-Mar, S., Jeon, O., Chacón, P., González, J., Alsberg, E. (2025). Photocrosslinkable and biodegradable hydrogels for the controlled delivery of exosomes. BioRxiv. https://doi.org/10.1101/2025.04.01.646472. DOI: https://doi.org/10.1101/2025.04.01.646472
Bannan, C., Calabro, G., Kyu, D., Mobley, D. (2016). Calculating partition coefficients of small molecules in octanol/water and cyclohexane/water. Journal of Chemical Theory and Computation, 12. https://doi.org/10.1021/acs.jctc.6b00449. DOI: https://doi.org/10.1021/acs.jctc.6b00449
Basak, M., Sahoo, B., Chaudhary, D., Narisepalli, S., Tiwari, S., Chitkara, D., Mittal, A. (2023). Human umbilical cord blood-mesenchymal stem cell derived exosomes as an efficient nanocarrier for docetaxel and MiR-125a: formulation optimization and anti-metastatic behaviour. Life Sciences, 322: 121621. https://doi.org/10.1016/j.lfs.2023.121621. DOI: https://doi.org/10.1016/j.lfs.2023.121621
Batagov, A. O., Kurochkin, I. V. (2013). Exosomes secreted by human cells transport largely MRNA fragments that are enriched in the 3′-untranslated regions. Biology Direct, 8(1): 12. https://doi.org/10.1186/1745-6150-8-12. DOI: https://doi.org/10.1186/1745-6150-8-12
Chen, A., He, B., Jin, H. (2022). Isolation of extracellular vesicles from arabidopsis. Current Protocols, 2. https://doi.org/10.1002/cpz1.352. DOI: https://doi.org/10.1002/cpz1.352
Chen, Q., Liu, Y., Ren, J., Zhong, P., Chen, M., Jia, D., Chen, H., Wei, T. (2021). Exosomes mediate horizontal transmission of viral pathogens from insect vectors to plant phloem. ELife, 10:64603. https://doi.org/10.7554/eLife.64603. DOI: https://doi.org/10.7554/eLife.64603
Chernyshev, V., Rachamadugu, V., Tseng, Y. H., Belnap, D. et al. (2015). Size and shape characterization of hydrated and desiccated exosomes. Analytical and Bioanalytical Chemistry, 407: 3285-3301. https://doi.org/10.1007/s00216-015-8535-3. DOI: https://doi.org/10.1007/s00216-015-8535-3
ClinicalTrials.gov. (2025). National Center for Biothecnology Information. https://Www.Clinicaltrials.Gov/.
Dash, S., Murthy, P., Nath, L., Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica, 67: 217-23.
Dehghani, P., Varshosaz, J., Mirian, M., Minaiyan, M., Kazemi, M., Bodaghi, M. (2024). Keratinocyte exosomes for topical delivery of tofacitinib in treatment of psoriasis: an in vitro / in vivo study in animal model of psoriasis. Pharmaceutical Research, 41: 1-17. https://doi.org/10.1007/s11095-023-03648-0. DOI: https://doi.org/10.1007/s11095-023-03648-0
Doadrio, A., Salinas A., Montero, J. M., Vallet, M. (2015). Drug release from ordered mesoporous silicas. Current Pharmaceutical Design, 22. https://doi.org/10.2174/1381612822666151106121419. DOI: https://doi.org/10.2174/1381612822666151106121419
Fuhrmann, G., Serio, A., Mazo, M., Nair, R., Stevens, M. (2015). Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. Journal of Controlled Release, 205: 35-44. https://doi.org/https://doi.org/10.1016/j.jconrel.2014.11.029. DOI: https://doi.org/10.1016/j.jconrel.2014.11.029
Greening, D. W., Xu, R., Ji, H., Tauro, B., Simpson R. (2015). A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Proteomic Profiling: Methods and Protocols, 179-209. https://doi.org/10.1007/978-1-4939-2550-6_15. DOI: https://doi.org/10.1007/978-1-4939-2550-6_15
Gul, R., Ahmed, N., Ullah, N., Khan, M., Elaissari, A., Rehman, A. (2018). Biodegradable ingredient-based emulgel loaded with ketoprofen nanoparticles. AAPS PharmSciTech, 19(4): 1869-81. https://doi.org/10.1208/s12249-018-0997-0. DOI: https://doi.org/10.1208/s12249-018-0997-0
Gul, R., Bashir, H., Sarfraz, M., Shaikh, A., Jardan, Y., Hussain, Z., Asad M. et al. (2024). Human plasma derived exosomes: impact of active and passive drug loading approaches on drug delivery. Saudi Pharmaceutical Journal, 32: 102096. https://doi.org/10.1016/j.jsps.2024.102096. DOI: https://doi.org/10.1016/j.jsps.2024.102096
Gupta, S., Rawat, S., Arora, V., Kottarath, S., Dinda, A., Vaishnav, P., Nayak, B., Mohanty, S. (2018). An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells. Stem Cell Research & Therapy, 9(1): 180. https://doi.org/10.1186/s13287-018-0923-0. DOI: https://doi.org/10.1186/s13287-018-0923-0
He, S., Pan, H., Qian, X., Zhang, J., Zhang, R. (2023). Preparation and evaluation in vitro of doxorubicin loaded mimetic exosomes-based delivery system. Pakistan Journal of Pharmaceutical Sciences, 36(3): 895-900. https://doi.org/10.36721/PJPS.2023.36.3.REG.895-900.1. DOI: https://doi.org/10.36721/PJPS.2023.36.3.REG.895-900.1
Higuchi, T. (1961). Rate of release of medicaments from ointment bases containing drugs in suspension. Journal of Pharmaceutical Sciences, 50(10): 874-75. https://doi.org/https://doi.org/10.1002/jps.2600501018. DOI: https://doi.org/10.1002/jps.2600501018
Jeyaram, A., Lamichhane, T., Wang, S., Zou, L., Dahal, E., Kronstadt, S., Levy, D. et al. (2020). Enhanced loading of functional MiRNA cargo via pH gradient modification of extracellular vesicles. Molecular Therapy, 28(3): 975-85. https://doi.org/https://doi.org/10.1016/j.ymthe.2019.12.007. DOI: https://doi.org/10.1016/j.ymthe.2019.12.007
Johnsen, K. B., Gudbergsson, J., Skov, M., Pilgaard, L., Moos, T., Duroux, M. (2014). A comprehensive overview of exosomes as drug delivery vehicles – Endogenous nanocarriers for targeted cancer therapy. Biochimica Biophysica Acta, 1846(1): 75-87. https://doi.org/10.1016/j.bbcan.2014.04.005. DOI: https://doi.org/10.1016/j.bbcan.2014.04.005
Jokhio, S., Peng, I., Peng, C. (2024). Extracellular vesicles isolated from arabidopsis thaliana leaves reveal characteristics of mammalian exosomes. Protoplasma, 261: 1-9. https://doi.org/10.1007/s00709-024-01954-x. DOI: https://doi.org/10.1007/s00709-024-01954-x
Kalishwaralal, K., Nazeer, A., Induja, D., Keerthana, C., Shifana, S., Anto, R. (2024). Enhanced extracellular vesicles mediated uttroside B (Utt-B) delivery to heptocellular carcinoma cell: pharmacokinetics based on PBPK modelling. Biochemical and Biophysical Research Communications, 703: 149648. https://doi.org/10.1016/j.bbrc.2024.149648. DOI: https://doi.org/10.1016/j.bbrc.2024.149648
Karmacharya, M., Kumar, S., Cho, Y. (2023). Tuning the extracellular vesicles membrane through fusion for biomedical applications. Journal of Functional Biomaterials, 14: 117. https://doi.org/10.3390/jfb14020117. DOI: https://doi.org/10.3390/jfb14020117
Kazsoki, A., Németh, K., Visnovitz, T., Lenzinger, D., Buzás, E., Zelkó, R. (2024). Formulation and characterization of nanofibrous scaffolds incorporating extracellular vesicles loaded with curcumin. Scientific Reports, 14(1): 27574. https://doi.org/10.1038/s41598-024-79277-3. DOI: https://doi.org/10.1038/s41598-024-79277-3
Khalid, W., Aslam, A., Ahmed, N., Sarfraz, M., Khan, J., Mohsin, S., Rajoka, M., Nazir, I., Amirzada, M. (2025). Human plasma-derived exosomes: a promising carrier system for the delivery of hydroxyurea to combat breast cancer. AAPS PharmSciTech, 26(1): 42. https://doi.org/10.1208/s12249-024-03028-w. DOI: https://doi.org/10.1208/s12249-024-03028-w
Khongkow, M., Yata, T., Boonrungsiman, S., Ruktanonchai, U., Graham, D., Namdee, K. (2019). Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-44569-6. DOI: https://doi.org/10.1038/s41598-019-44569-6
Kitagawa, M., Xu, X., Jackson, D. (2022). Trafficking and localization of KNOTTED1 related MRNAs in shoot meristems. Communicative & Integrative Biology, 15: 158-63. https://doi.org/10.1080/19420889.2022.2095125. DOI: https://doi.org/10.1080/19420889.2022.2095125
Kooijmans, S., Vader, P., Dommelen, S., Solinge, W., Schiffelers, R. (2012). Exosome mimetics: a novel class of drug delivery systems. International Journal of Nanomedicine, 7: 1525-41. https://doi.org/10.2147/IJN.S29661. DOI: https://doi.org/10.2147/IJN.S29661
Kosmidis, K., Argyrakis P., Macheras, P. (2003a). A reappraisal of drug release laws using Monte Carlo simulations: the prevalence of the Weibull function. Pharmaceutical Research, 20(7): 988-95. https://doi.org/10.1023/A:1024497920145. DOI: https://doi.org/10.1023/A:1024497920145
Kosmidis, K., Argyrakis, P., Macheras, P. (2003b). Fractal kinetics in drug release from finite fractal matrices. The Journal of Chemical Physics, 119: 6373-6377. https://doi.org/10.1063/1.1603731. DOI: https://doi.org/10.1063/1.1603731
Lee, Gi, Muthukumar, T., Choi, M., Shin, E., Kim, H., Baek, J., Jeong, Y. et al. (2020). Exosome mediated transfer of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration. Journal of Cellular Biochemistry, 121, febrero. https://doi.org/10.1002/jcb.29657. DOI: https://doi.org/10.1002/jcb.29657
Lee, K., Wah, L., Hung, L., Wai, L., Park, Y., Yi, K. (2024). Clinical applications of exosomes: a critical review. International Journal of Molecular Sciences, 25(14). https://doi.org/10.3390/ijms25147794. DOI: https://doi.org/10.3390/ijms25147794
Li, H., Wang, X., Guo, X., Wan, Q., Teng, Y., Liu, J. (2022). Development of rapamycin-encapsulated exosome-mimetic nanoparticles-in-PLGA microspheres for treatment of hemangiomas. Biomedicine & Pharmacotherapy, 148: 112737. https://doi.org/https://doi.org/10.1016/j.biopha.2022.112737. DOI: https://doi.org/10.1016/j.biopha.2022.112737
Li, K. Wong, D., Hong, K., Raffai, R. (2018). Cushioned-density gradient ultracentrifugation (C-DGUC): a refined and high performance method for the isolation, characterization, and use of exosomes. Extracellular RNA: Methods and Protocols, 69-83. https://doi.org/10.1007/978-1-4939-7652-2_7. DOI: https://doi.org/10.1007/978-1-4939-7652-2_7
Li, M., Huang, L., Chen, J., Ni, F., Zhang, Y., Liu, F. (2021). Isolation of exosome nanoparticles from human cerebrospinal fluid for proteomic analysis. ACS Applied Nano Materials, 4(4): 3351-59. https://doi.org/10.1021/acsanm.0c02622. DOI: https://doi.org/10.1021/acsanm.0c02622
Lionetti, V. (2022). The role of exosomes in health and disease. International Journal of Molecular Sciences, 23: 11011. https://doi.org/10.3390/ijms231911011. DOI: https://doi.org/10.3390/ijms231911011
Liu, N., Hou, L., Chen, X., Bao, J., Chen, F., Cai, W., Zhu, H., Wang, L., Chen, X. (2024). Arabidopsis TETRASPANIN8 mediates exosome secretion and glycosyl inositol phosphoceramide sorting and trafficking. The Plant Cell, 36(3): 626-41. https://doi.org/10.1093/plcell/koad285. DOI: https://doi.org/10.1093/plcell/koad285
Liu, Y., Castro, K., Liu, J. (2021). Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horizons. https://doi.org/10.1039/d0nh00605j. DOI: https://doi.org/10.1039/D0NH00605J
Lyu, S., Liu, Q., Yuen, H., Xie, H., Yang, Y., Yeung, K., Tang, C. et al. 2024. A differential-targeting core–shell microneedle patch with coordinated and prolonged release of mangiferin and MSC-derived exosomes for scarless skin regeneration. Materials Horizons, 11(11): 2667-84. https://doi.org/10.1039/D3MH01910A. DOI: https://doi.org/10.1039/D3MH01910A
Mahmood, A., Otruba, Z., Weisgerber, A., Palay, M., Nguyen, M., Bills, B., Knowles, M. (2023). Exosome secretion kinetics are controlled by temperature. Biophysical Journal, 122. https://doi.org/10.1016/j.bpj.2023.02.025. DOI: https://doi.org/10.1101/2022.07.22.501177
Maillot, C., Sion, C., De Isla, N., Toye, D., Olmos, E. (2021). Quality by design to define critical process parameters for mesenchymal stem cell expansion. Biotechnology Advances, 50: 107765. https://doi.org/10.1016/j.biotechadv.2021.107765. DOI: https://doi.org/10.1016/j.biotechadv.2021.107765
Mast, M. P., Modh, H., Knoll, J., Fecioru, E. y Wacker, M. G. (2021). An update to dialysis-based drug release testing – Data analysis and validation using the pharma test dispersion releaser. Pharmaceutics, 13(12): 2007. https://doi.org/10.3390/pharmaceutics13122007. DOI: https://doi.org/10.3390/pharmaceutics13122007
Mehryab, F., Rabbani, S., Shekari, F., Nazari, A., Goshtasbi, N. (2023). Sirolimus-loaded exosomes as a promising vascular delivery system for the prevention of post-angioplasty restenosis. Drug Delivery and Translational Research, 14. https://doi.org/10.1007/s13346-023-01390-z. DOI: https://doi.org/10.1007/s13346-023-01390-z
Mircioiu, C., Voicu, V., Anuta, V., Tudose, A., Celia, C., Paolino, D., Fresta, M., Roxana, S., Mircioiu, I. (2019). Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics, 11: 140. https://doi.org/10.3390/pharmaceutics11030140. DOI: https://doi.org/10.3390/pharmaceutics11030140
Morishita, M., Takahashi, Y., Nishikawa, M., Takakura, Y. (2017). Pharmacokinetics of exosomes-an important factor for elucidating the biological roles of exosomes and for the development of exosome-based therapeutics. Journal of Pharmaceutical Sciences, 106(9): 2265-69. https://doi.org/10.1016/j.xphs.2017.02.030. DOI: https://doi.org/10.1016/j.xphs.2017.02.030
Nieszporek, A., Wierzbicka, M., Łabędź, N., Zajac, W., Cybinska, J., Gazinska, P. (2024). Role of exosomes in salivary gland tumors and technological advances in their assessment. Cancers, 16: 3298. https://doi.org/10.3390/cancers16193298. DOI: https://doi.org/10.3390/cancers16193298
Noyes, A., Whitney, W. (1897). The rate of solution of solid substances in their own solutions. Journal of the American Chemical Society, 19(12): 930-34. https://doi.org/10.1021/ja02086a003. DOI: https://doi.org/10.1021/ja02086a003
Oraki, M., Saeidifar, M., Khanlarkhani, A., Javaheri, M. (2024). A novel carrier based on DNA and exosome to sustained release of 5-fluorouracil anticancer drug. ChemistrySelect, 9(10): e202304448. https://doi.org/10.1002/slct.202304448. DOI: https://doi.org/10.1002/slct.202304448
Oshchepkova, A., Neumestova, A., Matveeva, K., Artemyeva, K., Morozova, K., Kiseleva, E., Zenkova, M., Vlassov, V. (2019). Cytochalasin-B-inducible nanovesicle mimics of natural extracellular vesicles that are capable of nucleic acid transfer. Micromachines, 10: 750. https://doi.org/10.3390/mi10110750. DOI: https://doi.org/10.3390/mi10110750
Papadopoulou, V., Kosmidis, K., Vlachou, M., Macheras, P. (2006). On the use of Weibull function for the discernment of drug release mechanisms. International Journal of Pharmaceutics, 309: 44-50. https://doi.org/10.1016/j.ijpharm.2005.10.044. DOI: https://doi.org/10.1016/j.ijpharm.2005.10.044
Park, E., Jung, H., Choi, H., Jang, H., Park, H., Nejsum, L., Kwon, T. (2020). Exosomes co-expressing AQP5-targeting miRNAs and IL-4 receptor-binding peptide inhibit the migration of human breast cancer cells. The FASEB Journal, 34(2): 3379-98. https://doi.org/https://doi.org/10.1096/fj.201902434R. DOI: https://doi.org/10.1096/fj.201902434R
Patel, N., Chotai, N., Patel, J., Soni, T., Desai, J., Patel, R. (2008). Comparison of in vitro dissolution profiles of oxcarbazepine-HP BCD tablet formulations with marketed oxcarbazepine tablets. Dissolution Technologies, 15. https://doi.org/10.14227/DT150408P28. DOI: https://doi.org/10.14227/DT150408P28
Peppas, N. y Sahlin, J. (1989). A simple equation for the description of solute release. III. coupling of diffusion and relaxation. International Journal of Pharmaceutics, 57(2): 169-72. https://doi.org/https://doi.org/10.1016/0378-5173(89)90306-2. DOI: https://doi.org/10.1016/0378-5173(89)90306-2
Polli, J., Singh, G., Augsburger, L., Shah, V. (1997). Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. Journal of Pharmaceutical Sciences, 86(6): 690-700. https://doi.org/https://doi.org/10.1021/js960473x. DOI: https://doi.org/10.1021/js960473x
Ramesh, D., Bakkannavar, S., Bhat, V., Ranganath, K., Sharan, K. (2025). Comparative study on drug encapsulation and release kinetics in extracellular vesicles loaded with snake venom L - Amino acid oxidase. Research Square. https://doi.org/10.21203/rs.3.rs-6004383/v1. DOI: https://doi.org/10.21203/rs.3.rs-6004383/v1
Reseco, L., Molina-Crespo, Á., Atienza, M., González, E., Falcon-Pérez, J., Cantero, J. (2024). Characterization of extracellular vesicles from human saliva: effects of age and isolation techniques. Cells, 13:95. https://doi.org/10.3390/cells13010095. DOI: https://doi.org/10.3390/cells13010095
Rinaki, E., Dokoumetzidis, A. y Macheras, P. (2003). The mean dissolution time depends on the dose/solubility ratio. Pharmaceutical Research, 20(3): 406-8. https://doi.org/10.1023/A:1022652004114. DOI: https://doi.org/10.1023/A:1022652004114
Ritger, P., Peppas, N. (1987). A simple equation for description of solute release II. fickian and anomalous release from swellable devices. Journal of Controlled Release, 5(1): 37-42. https://doi.org/https://doi.org/10.1016/0168-3659(87)90035-6. DOI: https://doi.org/10.1016/0168-3659(87)90035-6
Sadeghi Ghadi, Z., Dinarvand, R., Asemi, N., Talebpour Amiri, F., Ebrahimnejad, P. (2019). Preparation, characterization and in vivo evaluation of novel hyaluronan containing niosomes tailored by box-behnken design to co-encapsulate curcumin and quercetin. European Journal of Pharmaceutical Sciences, 130: 234-46. https://doi.org/https://doi.org/10.1016/j.ejps.2019.01.035. DOI: https://doi.org/10.1016/j.ejps.2019.01.035
Saeidifar, M., Saboury, A. A., Macgregor, R. (2024). Formulation development, characterization and anti-cancer study of a nanocarrier based on albumin nanoparticles and exosome for carboplatin sustained release. Journal of Molecular Liquids, 398: 124230. https://doi.org/10.1016/j.molliq.2024.124230. DOI: https://doi.org/10.1016/j.molliq.2024.124230
Salarpour, S., Forootanfar, H., Pournamdari, M., Ahmadi-Zeidabadi, M., Esmaeeli, M., Pardakhty, A. 2019. Paclitaxel incorporated exosomes derived from glioblastoma cells: comparative study of two loading techniques. DARU Journal of Pharmaceutical Sciences, 27(2): 533-39. https://doi.org/10.1007/s40199-019-00280-5. DOI: https://doi.org/10.1007/s40199-019-00280-5
Sancho-Albero, M., Encabo-Berzosa, M. del M., Beltrán-Visiedo, M., Fernández Messina, L., Sebastian, V., Sánchez-Madrid, F., Arruebo, M., Santamaría, J., Martín-Duque, P. (2019). Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids. Nanoscale, 11. https://doi.org/10.1039/C9NR06183E. DOI: https://doi.org/10.1039/C9NR06183E
Seyedahmadi, M., Saeidifar, M., Javadpour, J., Rezaei, H. (2023). Preparation and characterization of 5‐fluorouracil loaded cellulose and exosome nanocarriers: sustained release behavior and cytotoxicity studies. ChemistrySelect, 8. https://doi.org/10.1002/slct.202300967. DOI: https://doi.org/10.1002/slct.202300967
Shafei, S., Khanmohammadi, M., Ghanbari, H., Taghdiri, V., Tafti, S., Rabbani, S., Kasaiyan, M., Basiri, M., Tavoosidana, G. (2022). Effectiveness of exosome mediated miR-126 and miR-146a delivery on cardiac tissue regeneration. Cell and Tissue Research, 390: 1-22. https://doi.org/10.1007/s00441-022-03663-4. DOI: https://doi.org/10.1007/s00441-022-03663-4
Skliar, M., Chernyshev, V. S. (2019). Imaging of extracellular vesicles by atomic force microscopy. Journal of Visualized Experiments, 151: e59254. https://doi.org/10.3791/59254. DOI: https://doi.org/10.3791/59254-v
Song, J., Kim, J., Shin, J., Moon, K., Park, J., Park, K., Lee, E. (2021). Role of synovial exosomes in osteoclast differentiation in inflammatory arthritis. Cells, 10:120. https://doi.org/10.3390/cells10010120. DOI: https://doi.org/10.3390/cells10010120
Venkateswarlu, V., Manjunath, K. (2004). Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. Journal of Controlled Release, 95(3): 627-38. https://doi.org/https://doi.org/10.1016/j.jconrel.2004.01.005. DOI: https://doi.org/10.1016/j.jconrel.2004.01.005
Wan, Z., Zhao, L., Lu, F., Gao, X., Dong, Y., Zhao, Y., Wei, M., Yang, G., Xing, C., Liu, L. (2020). Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics, 10(1): 218-30. https://doi.org/10.7150/thno.38198. DOI: https://doi.org/10.7150/thno.38198
Wang, S., He, B., Wu, H., Cai, Q., Ramírez, O., Abreu, C., Birch, P., Jin, H. (2024). Plant mRNAs move into a fungal pathogen via extracellular vesicles to reduce infection. Cell Host & Microbe, 32(1): 93-105.e6. https://doi.org/10.1016/j.chom.2023.11.020. DOI: https://doi.org/10.1016/j.chom.2023.11.020
Welty, J., Rorrer, G., Foster, D., Bhaskarwar, A. (2014). Fundamentals of momentum, heat and mass transfer. 6a ed. International Student Version, Wiley.
Willms, E., Johansson, H., Mäger, I., Lee, Y., Blomberg, K., Sadik, M., Alaarg, A. et al. (2016). Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports, 6: 22519. https://doi.org/10.1038/srep22519. DOI: https://doi.org/10.1038/srep22519
Wu, M., Ouyang, Y., Wang, Z., Zhang, R., Huang, P.-H., Chen, C., Li, H. et al. (2017). Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proceedings of the National Academy of Sciences, 114: 201709210. https://doi.org/10.1073/pnas.1709210114. DOI: https://doi.org/10.1073/pnas.1709210114
Xu, K., Feng, H., Zhao, R., Huang, Y. (2025). Targeting tetraspanins at cell interfaces: functional modulation and exosome-based drug delivery for precise disease treatment. ChemMedChem, 20(2): e202400664. https://doi.org/https://doi.org/10.1002/cmdc.202400664. DOI: https://doi.org/10.1002/cmdc.202400664
Yang, X., Shi, G., Guo, J., Wang, C., He, Y. (2018). Exosome-encapsulated antibiotic against intracellular infections of methicillin-resistant Staphylococcus aureus. International Journal of Nanomedicine, 13: 8095-8104. https://doi.org/10.2147/IJN.S179380. DOI: https://doi.org/10.2147/IJN.S179380
Yerneni, S., Lathwal, S., Cuthbert, J., Kapil, K., Szczepaniak, G., Jeong, J., Das, S., Campbell, P., Matyjaszewski, K. (2022). Controlled release of exosomes using atom transfer radical polymerization-based hydrogels. Biomacromolecules. https://doi.org/10.1021/acs.biomac.1c01636. DOI: https://doi.org/10.1021/acs.biomac.1c01636
Yuksel, N., Kanik, A., Baykara, T. (2000). Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and -independent methods. International Journal of Pharmaceutics, 209:57-67. https://doi.org/10.1016/S0378-5173(00)00554-8. DOI: https://doi.org/10.1016/S0378-5173(00)00554-8
Zhou, M., Weber, S., Zhao, Y., Chen, H., Sundstrom, J. (2020). Methods for exosome isolation and characterization. 23-38. Exosomes. A Clinical Compendium, 23-38. https://doi.org/10.1016/B978-0-12-816053-4.00002-X. DOI: https://doi.org/10.1016/B978-0-12-816053-4.00002-X
Zinoviev, A., Hellen, C., Pestova, T. (2020). In vitro characterization of the activity of the mammalian RNA exosome on mRNAs in ribosomal translation complexes. Methods Mol Biol., 327-54. https://doi.org/10.1007/978-1-4939-9822-7_16. DOI: https://doi.org/10.1007/978-1-4939-9822-7_16