Aerogel de PVA cargado con nanopartículas biogénicas de selenio: propiedades fisicoquímicas y ensayos de citotoxicidad
Contenido principal del artículo
Resumen
En la actualidad, el cáncer cervicouterino es considerado una de las principales causas de mortalidad en mujeres a nivel mundial, resaltando la necesidad urgente de desarrollar estrategias terapéuticas que actúen de manera conjunta, efectiva y selectiva. Las nanopartículas de selenio (SeNPs) y los nanocompositos (NC) podrían surgir como sistemas de liberación de quimioterapéuticos para mejorar la eficacia de los tratamientos. El objetivo de este estudio fue evaluar el efecto citotóxico de nanopartículas (NPs) de selenio (Se) sintetizadas biogénicamente con extracto de Amphipterygium glaucum sobre células HeLa (cáncer cervicouterino) en cultivo 2D. Las SeNPs obtenidas presentaron un pico de máxima absorción a 275 nm (UV-Vis), un tamaño promedio de 14 nm y morfología semiesférica (TEM). Estas SeNPs se incorporaron en un aerogel de alcohol polivinílico (PVA), resultando en un NC con un peso molecular de 130,000 (SeNPs@PVA130), cuya distribución de Se y estructura porosa se confirmó por SEM. El análisis de espectroscopía FTIR-ATR evidenció interacciones entre los grupos funcionales del extracto y el Se, sugiriendo su papel como agente reductor y estabilizante. El ensayo bromuro de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolio (MTT) demostró un efecto citotóxico dependiente de la concentración, con valores de IC₅₀ de 93.8 µg/mL para las SeNPs y de 4.5 µg/mL para SeNPs@PVA130. Además, el ensayo de anexina V- isotiocianato de fluoresceína (FITC) indicó apoptosis temprana como principal mecanismo de muerte celular y el ensayo de cierre de herida reveló una inhibición significativa de la migración celular. Estos hallazgos respaldan el potencial de estos nanomateriales como agentes citotóxicos y proapoptóticos. En el futuro, se tendrían que contemplar estudios complementarios en sistemas más complejos para ser empleados como coadyuvantes sostenibles junto con los quimioterapéuticos convencionales.
Descargas
Detalles del artículo

Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Abdelaziz, H. T. O., Seif Mohamed, E. M., Younis, S. K. A. (2025). Selenium nanoparticle loaded on PVA/chitosan biofilm synthesized from orange peels: antimicrobial and antioxidant properties for plum preservation. BMC Chemistry, 19: 245. https://doi.org/10.1186/s13065-025-01608-w. DOI: https://doi.org/10.1186/s13065-025-01608-w
Abdihaji, M., Mirzaei Chegeni, M., Hadizadeh, A., Farrokhzad, N., Kheradmand, Z., Fakhrfatemi, P., Faress, F., Moeinabadi-Bidgoli, K., Noorbazargan, H., Mostafavi, E. (2023). Polyvinyl alcohol (PVA)-based nanoniosome for enhanced in vitro delivery and anticancer activity of thymol. International Journal of Nanomedicine, 18: 3459-3488. https://doi.org/10.2147/IJN.S401725. DOI: https://doi.org/10.2147/IJN.S401725
Abdolazizi, A., Wijesinghe, I., Marriam, I., Chathuranga, H., Golberg, D., Yan, C. (2024). Development of light, strong, and water-resistant PVA composite aerogels. Nanomaterials, 14(9): 745. https://doi.org/10.3390/nano14090745. DOI: https://doi.org/10.3390/nano14090745
Alghunaim, N. S. (2016). Optimization and spectroscopic studies on carbon nanotubes/PVA nanocomposites. Results in Physics, 6: 456-460. https://doi.org/10.1016/j.rinp.2016.08.002. DOI: https://doi.org/10.1016/j.rinp.2016.08.002
Akinpelu L. A., Olawuni I. J., Ogundepo G. E., Adegoke A. M., Olayiwola G., Idowu T. O. (2019). Spectroscopic analysis and anti-inflammatory effects of Milicia excelsa (Moraceae) leaf and fractions. GSC Biological and Pharmaceutical Sciences, 06(03): 051-060. https://doi.org/10.30574/gscbps.2019.6.3.0035. DOI: https://doi.org/10.30574/gscbps.2019.6.3.0035
Ansari, J. A., Malik, J. A., Ahmed, S., Manzoor, M., Ahemad, N., Anwar, S. (2024). Recent advances in the therapeutic applications of selenium nanoparticles. Molecular Biology Reports, 51(1): 688. https://doi.org/10.1007/s11033-024-09598-z. DOI: https://doi.org/10.1007/s11033-024-09598-z
Arockiya Aarthi Rajathi, F., Arumugam, R., Saravanan, S., Anantharaman, P. (2014). Phytofabrication of gold nanoparticles assisted by leaves of Suaeda monoica and its free radical scavenging property. Journal of Photochemistry and Photobiology. B, Biology, 135: 75-80. https://doi.org/10.1016/j.jphotobiol.2014.03.016. DOI: https://doi.org/10.1016/j.jphotobiol.2014.03.016
Bautista Aguilar, M. L., García Pérez, M. E., Esquivel García, R. (2024). Cuachalalate (Amphipterygium adstringens): un viaje desde la medicina ancestral hasta la actualidad. Milenaria, Ciencia y Arte, 24: 31-33. https://doi.org/10.35830/mcya.vi24.480. DOI: https://doi.org/10.35830/mcya.vi24.480
Beltrán Rodríguez, L., Bye, R. (2023). Amphipterygium adstringens (Schltdl.) Standl. Amphipterygium glaucum (Hemsl. & Rose) Hemsl. & Rose Amphipterygium molle (Hemsl.) Hemsl. & Rose Amphipterygium simplicifolium (Standl.) Cuev.-Fig. ANACARDIACEAE. En Casas, A., Blancas Vázquez, J. J. (eds.), Ethnobotany of the mountain regions of Mexico. Ethnobotany of mountain regions. Springer, Cham. https://doi.org/10.1007/978-3-030-99357-3_28. DOI: https://doi.org/10.1007/978-3-030-99357-3_28
Cetin, A., Ilk Capar, M. (2022). Functional-group effect of ligand molecules on the aggregation of gold nanoparticles: a molecular dynamics simulation study. The Journal of Physical Chemistry. B, 126(29): 5534-5543. https://doi.org/10.1021/acs.jpcb.2c01132. DOI: https://doi.org/10.1021/acs.jpcb.2c01132
Chávez-Andrade, G. M., Tanomaru-Filho, M., Rodrigues, E. M., Gomes-Cornélio, A. L., Faria, G., Bernardi, M. I. B., Guerreiro-Tanomaru, J. M. (2017). Cytotoxicity, genotoxicity and antibacterial activity of poly(vinyl-alcohol)-coated silver nanoparticles and farnesol as irrigating solutions. Archives of Oral Biology, 84: 89-93. https://doi.org/10.1016/j.archoralbio.2017.09.028. DOI: https://doi.org/10.1016/j.archoralbio.2017.09.028
Chen, Y. W., Li, L., D’Ulivo, A., Belzile, N. (2006). Extraction and determination of elemental selenium in sediments – A comparative study. Analytica Chimica Acta, 577(1): 126-133. https://doi.org/10.1016/j.aca.2006.06.020. DOI: https://doi.org/10.1016/j.aca.2006.06.020
Cheng, J., Gu, C. J., Zhang, B., Xie, F., Yuan, M. M., Li, M. Q., Yu, J. J. (2017). Cisplatin inhibits the growth, migration and invasion of cervical cancer cells by down-regulating IL-17E/IL-17RB. International Journal of Clinical and Experimental Pathology, 10(9): 9341-9351.
Cherian, T., Merlin, T., Rajendran, K., Thomas, J. (2025). Biogenic production and characterization of SeNPs (selenium nanoparticles) utilizing aqueous fruit extract of Morus alba and assessment of their biological potentialities. Results in Surfaces and Interfaces, 19: 100562. https://doi.org/10.1016/j.rsurfi.2025.100562. DOI: https://doi.org/10.1016/j.rsurfi.2025.100562
Dasari, S., Tchounwou, P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. European Journal of Pharmacology, 740: 364-378. https://doi.org/10.1016/j.ejphar.2014.07.025. DOI: https://doi.org/10.1016/j.ejphar.2014.07.025
Dos Santos Souza, L. M., Dibo, M., Puño Sarmiento, J. J., Seabra, A. B., Pinto Medeiros, L., Martins Lourenço, I., Katsuko Takayama Kobayashi, R., Nakazato, G. (2022). Biosynthesis of selenium nanoparticles using combinations of plant extracts and their antibacterial activity. Current. Research in Green and Sustainable Chemistry, 5: 100303. https://doi.org/10.1016/j.crgsc.2022.100303. DOI: https://doi.org/10.1016/j.crgsc.2022.100303
Ferro, C., Florindo, H. F., Santos, H. A. (2021). Selenium nanoparticles for biomedical applications: from development and characterization to therapeutics. Advanced Healthcare Materials, 10(16): e2100598. https://doi.org/10.1002/adhm.202100598. DOI: https://doi.org/10.1002/adhm.202100598
Fowler, J. R., Maani, E. V., Dunton, C. J., Gasalberti, D. P., Jack, B. W. (2023). Cervical cancer. [Actualizado: 12 de noviembre, 2023]. StatPearls [Internet]. Treasure Island (FL): StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK431093.
García-González, C. A., Sosnik, A., Kalmár, J., De Marco, I., Erkey, C., Concheiro, A., Álvarez-Lorenzo, C. (2021). Aerogels in drug delivery: from design to application. Journal of Controlled Release, 332: 40-63. https://doi.org/10.1016/j.jconrel.2021.02.012. DOI: https://doi.org/10.1016/j.jconrel.2021.02.012
Garza-García, J. J. O., Hernández-Díaz, J. A., León-Morales, J. M., Velázquez-Juárez, G., Zamudio-Ojeda, A., Arratia-Quijada, J., Reyes-Maldonado, O. K., López-Velázquez, J. C., García-Morale, S. (2023). Selenium nanoparticles based on Amphipterygium glaucum extract with antibacterial, antioxidant, and plant biostimulant properties. Journal of Nanobiotechnology, 21: 252. https://doi.org/10.1186/s12951-023-02027-6. DOI: https://doi.org/10.1186/s12951-023-02027-6
Gomi, F., Sasaki, N., Shichi, Y., Minami, F., Shinji, S., Toyoda, M., Ishiwata, T. (2021). Polyvinyl alcohol increased growth, migration, invasion, and sphere size in the PK-8 pancreatic ductal adenocarcinoma cell line. Heliyon, 7(2): e06182. https://doi.org/10.1016/j.heliyon.2021.e06182. DOI: https://doi.org/10.1016/j.heliyon.2021.e06182
Gowsia, I., Mir, F. A., Banday, J. A. (2022). Synthesis, characterization, and antimicrobial evaluation of polyvinylalcohol-osthol composite films. Turkish Journal of Chemistry, 46(6): 1984-1998. https://doi.org/10.55730/1300-0527.3496. DOI: https://doi.org/10.55730/1300-0527.3496
Gunti, L., Dass, R. S., Kalagatur, N. K. (2019). Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Frontiers in Microbiology, 10: 931. https://doi.org/10.3389/fmicb.2019.00931. DOI: https://doi.org/10.3389/fmicb.2019.00931
Han, M., Zhang, Y., Zhang, Y., Ye, Q., Sillanpää, M., Zhu, X., Yang, W. (2024). A mini-review on polyvinyl alcohol/lignin (nano)composites: preparation, applications and perspectives. Sustainable Chemistry and Pharmacy, 42: 101861. https://doi.org/10.1016/j.scp.2024.101861. DOI: https://doi.org/10.1016/j.scp.2024.101861
Hasan, I., Khan, R. A., Alharbi, W., Alharbi, K. H., Abu Khanjer, M., Alslame, A. (2020). Synthesis, characterization and photo-catalytic activity of guar-gum-g-aliginate@silver bionanocomposite material. RSC Advances, 10(13): 7898-7911. https://doi.org/10.1039/d0ra00163e. DOI: https://doi.org/10.1039/D0RA00163E
Hernández-Díaz, J. A., Garza-García, J. J., León-Morales, J. M., Zamudio-Ojeda, A., Arratia-Quijada, J., Velázquez-Juárez, G., López-Velázquez, J. C., García-Morales, S. (2021). Antibacterial activity of biosynthesized selenium nanoparticles using extracts of Calendula officinalis against potentially clinical bacterial strains. Molecules, 26(19): 5929. https://doi.org/10.3390/molecules26195929. DOI: https://doi.org/10.3390/molecules26195929
Ilavenil, K. K., Senthilkumar, V., Kasthuri, A. (2025). Green synthesis of metal nanoparticles from three medicinal plants: a review of environmental and health applications. Discover Catalysis, 2: 3. https://doi.org/10.1007/s44344-025-00007-6. DOI: https://doi.org/10.1007/s44344-025-00007-6
Kudarha, R., Colaco, V., Gupta, A., Kulkarni, S., Soman, S., Kulkarni, J., Rana, K., Navti, P., Tiwari, R., Osmani, R., Datta, D., Angolkar, M., Mutalik, S., Moorkoth, S., Patel, J. y Dhas, N. (2024). Recent advancements in selenium nanoconstructs as a potential carrier in cancer therapy. Nano-Structures and Nano-Objects, 40: 101399. https://doi.org/10.1016/j.nanoso.2024.101399. DOI: https://doi.org/10.1016/j.nanoso.2024.101399
Liu T., Pan S., Zhou Q., Yang Z., Zhang Z., Liu H., He L., Lan J., Hua Y., Chen T., Zhu X. (2025). Selenium nanoparticles restrain recurrence of cervical cancer in drug-free period by inhibiting the expression of ABC transporters. Nano Today, 62: 102692. https://doi.org/10.1016/j.nantod.2025.102692. DOI: https://doi.org/10.1016/j.nantod.2025.102692
Mohiuddin, M., Kasahara, K. (2021). Cisplatin and pemetrexed have distinctive growth-inhibitory effects in monotherapy and combination therapy on KRAS-dependent A549 lung cancer cells. Cancer Genomics & Proteomics, 18(4): 579-590. https://doi.org/10.21873/cgp.20282. DOI: https://doi.org/10.21873/cgp.20282
Moosavy, M. H., De la Guardia, M., Mokhtarzadeh, A., Khatibi, S. A., Hosseinzadeh, N., Hajipour, N. (2023). Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil. Scientific Reports, 13(1): 7230. https://doi.org/10.1038/s41598-023-33632-y. DOI: https://doi.org/10.1038/s41598-023-33632-y
Oh, N. G., Hwang, S. Y., Ho Na, Y. (2022). Fabrication of a PVA-based hydrogel microneedle patch. ACS Omega, 7(29): 25179-25185. https://doi.org/10.1021/acsomega.2c01993. DOI: https://doi.org/10.1021/acsomega.2c01993
Okita, Y., Zheng, L., Kawanishi, K., Miyoshi, H., Yanagihara, K., Kato, M. (2021). Polyvinyl alcohol scaffolds and supplementation support 3D and sphere culturing of human cancer cell lines by reducing apoptosis and promoting cellular proliferation. Genes to Cells, 26(5): 336-343. https://doi.org/10.1111/gtc.12843. DOI: https://doi.org/10.1111/gtc.12843
Oliveira, R. N., Mancini, M. C., Oliveira, F. C., Passos, T. M., Quilty, B., Thiré, R. M., McGuinness, G. B. (2016). FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Materia-rio de Janeiro, 21: 767-779. https://doi.org/10.1590/S1517-707620160003.0072. DOI: https://doi.org/10.1590/S1517-707620160003.0072
Ortega-Sánchez, C., Melgarejo-Ramírez, Y., Rodríguez-Rodríguez, R., Jiménez-Ávalos, J. A., Giraldo-Gómez, D. M., Gutiérrez-Gómez, C., Rodríguez-Campos, J., Luna-Bárcenas, G., Velasquillo, C., Martínez-López, V., García-Carvajal, Z. Y. (2024). Hydrogel based on chitosan/gelatin/poly(vinyl alcohol) for in vitro human auricular chondrocyte culture. Polymers, 16(4): 479. https://doi.org/10.3390/polym16040479. DOI: https://doi.org/10.3390/polym16040479
Pirtarighat, S., Ghannadnia, M., Baghshahi, S. (2019). Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry, 9: 1-9. https://doi.org/10.1007/s40097-018-0291-4. DOI: https://doi.org/10.1007/s40097-018-0291-4
Ravi, D., Gunasekar, B., Kaliyaperumal, V., Babu, S. (2024). A recent advances in antimicrobial activity of green synthesized selenium nanoparticle. OpenNano, 20: 100219. https://doi.org/10.1016/j.onano.2024.100219. DOI: https://doi.org/10.1016/j.onano.2024.100219
Salem, S. S., Badawy, M. S. E. M., Al-Askar, A. A., Arishi, A. A., Elkady, F. M., Hashem, A. H. (2022). Green biosynthesis of selenium nanoparticles using orange peel waste: characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life, 12(6): 893. https://doi.org/10.3390/life12060893. DOI: https://doi.org/10.3390/life12060893
Singh, A., Jaiswal, S. K., Prakash, R., Mihara, H., Tejo, P. (2024). Nanoparticles synthesized and stabilized by fungal extract exhibit enhanced bioactivity. Journal of Cluster Science, 35: 1425-1437. https://doi.org/10.1007/s10876-024-02600-5. DOI: https://doi.org/10.1007/s10876-024-02600-5
Song, B., Cho, C. W. (2024). Applying polyvinyl alcohol to the preparation of various nanoparticles. Journal of Pharmaceutical Investigation, 54: 249-266. https://doi.org/10.1007/s40005-023-00649-4. DOI: https://doi.org/10.1007/s40005-023-00649-4
Soni, S. R., Bhunia, B. K., Kumari, N., Dan, S., Mukherjee, S., Mandal, B. B., Ghosh, A. (2018). Therapeutically effective controlled release formulation of pirfenidone from nontoxic biocompatible carboxymethyl pullulan-poly(vinyl alcohol) interpenetrating polymer networks. ACS Omega, 3(9): 11993-12009. https://doi.org/10.1021/acsomega.8b00803. DOI: https://doi.org/10.1021/acsomega.8b00803
Tian, J., Wei, X., Zhang, W., Xu, A. (2020). Effects of selenium nanoparticles combined with radiotherapy on lung cancer cells. Frontiers in Bioengineering and Biotechnology, 8: 598997. https://doi.org/10.3389/fbioe.2020.598997. DOI: https://doi.org/10.3389/fbioe.2020.598997
Varlamova, E. G., Goltyaev, M. V., Mal’tseva, V. N., Turovsky, E. A., Sarimov, R. M., Simakin, A. V., Gudkov, S. V. (2021). Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. International Journal of Molecular Sciences, 22(15): 7798. https://doi.org/10.3390/ijms22157798. DOI: https://doi.org/10.3390/ijms22157798
Wilkinson, A. C., Ishida, R., Kikuchi, M. (2019). Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature, 571: E12. https://doi.org/10.1038/s41586-019-1395-9. DOI: https://doi.org/10.1038/s41586-019-1395-9
Xu, Y., Lin, Z., Zhao, N., Zhou, L., Liu, F., Cichacz, Z., Zhang, L., Zhan, Q., Zhao, X. (2014). Receptor interactive protein kinase 3 promotes cisplatin-triggered necrosis in apoptosis-resistant esophageal squamous cell carcinoma cells. PloS One, 9(6): e100127. https://doi.org/10.1371/journal.pone.0100127. DOI: https://doi.org/10.1371/journal.pone.0100127
Yan Wang, S., Wu, Y., Chen, T., Wu, X., Qiangqiang Zhu, W. Y., Wang, X., Zi, C. (2025). Selenium and selenoproteins: mechanisms, health functions, and emerging applications. Molecules, 30(3): 437. https://doi.org/10.3390/molecules30030437. DOI: https://doi.org/10.3390/molecules30030437
Zhang, Y., Chen, Y., Wang, B., Cai, Y., Zhang, M., Guo, X., Wu, A., Wang, W., Liu, N., Wang, X., Gong, Y., Pan, J., Jin, Y. (2024). A novel selenium nanocomposite modified by AANL inhibits tumor growth by upregulating CLK2 in lung cancer. Bioorg Chem, 148:107459. https://doi.org/10.1016/j.bioorg.2024.107459. DOI: https://doi.org/10.1016/j.bioorg.2024.107459