Arabidopsis thaliana: una década como modelo de estudio de los efectos negativos de nanopartículas metálicas
Contenido principal del artículo
Resumen
En la última década, Arabidopsis thaliana se ha consolidado como un organismo modelo clave para estudiar los efectos adversos de nanopartículas metálicas (MNPs) en plantas. Este artículo presenta una revisión sistemática de literatura científica reciente (2015-2025), enfocada en los efectos fisiológicos, moleculares y ecológicos provocados por diferentes tipos de MNPs, como Ag, Au, Cu, ZnO y TiO₂, sobre esta especie vegetal. Se recopilan hallazgos sobre inhibición del crecimiento, alteraciones en la fotosíntesis, retraso en la floración, estrés oxidativo, desequilibrios hormonales y cambios en la expresión génica. Asimismo, se discuten los impactos indirectos a través de la alteración de la microbiota del suelo. La revisión destaca que los efectos tóxicos de las MNPs pueden depender de factores como el tamaño, la forma, la carga superficial y la concentración. Se concluye que A. thaliana representa una herramienta predictiva útil para evaluar el riesgo ecológico de las MNPs y apoyar el desarrollo de marcos regulatorios en nanotecnología agrícola.
Descargas
Detalles del artículo

Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Ali, Shahid, Asif Mehmood y Naeem Khan. 2021. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, 2021(1): 6677616. https://doi.org/10.1155/2021/6677616. DOI: https://doi.org/10.1155/2021/6677616
Ameen, Fuad, Khawla Alsamhary, Jamila A. Alabdullatif y Saleh Alnadhari. 2021. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety, 213: 112027. https://doi.org/10.1016/J.ECOENV.2021.112027. DOI: https://doi.org/10.1016/j.ecoenv.2021.112027
Asadishad, Bahareh, Shawninder Chahal, Ali Akbari, Vanessa Cianciarelli, Mehrnoosh Azodi, Subhasis Ghoshal y Nathalie Tufenkji. 2018. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environmental Science and Technology, 52(4): 1908-1918. https://pubs.acs.org/doi/abs/10.1021/acs.est.7b05389. DOI: https://doi.org/10.1021/acs.est.7b05389
Ashraf, Syed Amir, Arif Jamal Siddiqui, Abd Elmoneim O. Elkhalifa, Mohammed Idrees Khan, Mitesh Patel, Mousa Alreshidi, Afrasim Moin, Ritu Singh, Mejdi Snoussi y Mohd Adnan. 2021. Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Science of The Total Environment, 768: 144990. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.144990. DOI: https://doi.org/10.1016/j.scitotenv.2021.144990
Awet, T. T., Y. Kohl, F. Meier, S. Straskraba, A. L. Grün, T. Ruf, C. Jost, R. Drexel, E. Tunc y C. Emmerling. 2018. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environmental Sciences Europe, 30(1): 1-10. https://doi.org/10.1186/S12302-018-0140-6/FIGURES/3. https://enveurope.springeropen.com/articles/10.1186/s12302-018-0140-6. DOI: https://doi.org/10.1186/s12302-018-0140-6
Azhar, Wardah, Ali Raza Khan, Noor Muhammad, Bohan Liu, Ge Song, Akhlaq Hussain, Muhammad Umair Yasin, Sulaiman Khan, Raheel Munir y Yinbo Gan. 2020. Ethylene mediates CuO NP-induced ultrastructural changes and oxidative stress in Arabidopsis thaliana leaves. Environmental Science: Nano, 7(3): 938-953. https://doi.org/10.1039/C9EN01302D. http://dx.doi.org/10.1039/C9EN01302D. DOI: https://doi.org/10.1039/C9EN01302D
Babu, E. R., Nagaraja C. Reddy, Atul Babbar, A. Chandrashekar, Raman Kumar, Pardeep Singh Bains, Majed Alsubih, Saiful Islam, Sanjeev Kumar Joshi, Achmad Rizal y Muhammad Imam Ammarullah. 2024. Characteristics of pulsating heat pipe with variation of tube diameter, filling ratio, and SiO₂ nanoparticles: biomedical and engineering implications. Case Studies in Thermal Engineering, 55: 104065. https://doi.org/https://doi.org/10.1016/j.csite.2024.104065. DOI: https://doi.org/10.1016/j.csite.2024.104065
Berger, Mauricio Sebastian y Wilson Engelmann. 2025. Nanotecnología en agricultura: jurisdicciones epistémicas y desafíos regulatorios en Argentina y Brasil. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 18(34): e69823. https://doi.org/10.22201/ceiich.24485691e.2025.34.69823. DOI: https://doi.org/10.22201/ceiich.24485691e.2025.34.69823
Bombin, S., M. LeFebvre, J. Sherwood, Y. Xu, Y. Bao y K. M. Ramonell. 2015. Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int. J. Mol. Sci., 16(10): 24174-93. https://doi.org/10.3390/ijms161024174. DOI: https://doi.org/10.3390/ijms161024174
Camara, Marcela Candido, Estefânia Vangelie Ramos Campos, Renata Aparecida Monteiro, Anderson do Espirito Santo Pereira, Patrícia Luiza de Freitas Proença y Leonardo Fernandes Fraceto. 2019. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. Journal of Nanobiotechnology, 17(1): 100. https://doi.org/10.1186/s12951-019-0533-8. DOI: https://doi.org/10.1186/s12951-019-0533-8
Cao, Jiamei, Yongqiang Feng, Baoyong Liu y Hongguang Li. 2018. Carbon skeleton doped with Co, N, S and P as efficient electrocatalyst for oxygen evolution reaction. Science China Materials, 61(5): 686-696. https://doi.org/10.1007/s40843-017-9149-y. DOI: https://doi.org/10.1007/s40843-017-9149-y
Castillo-Henríquez, Luis, Karla Alfaro-Aguilar, Jeisson Ugalde-Álvarez, Laura Vega-Fernández, Gabriela Montes de Oca-Vásquez y José Roberto Vega-Baudrit. 2020. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials, 10(9): 1763. https://www.mdpi.com/2079-4991/10/9/1763. DOI: https://doi.org/10.3390/nano10091763
Chavan, Sangeeta y Vigneshwaran Nadanathangam. 2019. Effects of nanoparticles on plant growth-promoting bacteria in Indian agricultural soil. Agronomy, 9(3): 140. https://www.mdpi.com/2073-4395/9/3/140/htm. DOI: https://doi.org/10.3390/agronomy9030140
Chen, Sensen, Ying Teng, Yongming Luo, Eiko Kuramae y Wenjie Ren. 2024. Threats to the soil microbiome from nanomaterials: a global meta and machine-learning analysis. Soil Biology and Biochemistry, 188: 109248. https://doi.org/https://doi.org/10.1016/j.soilbio.2023.109248. DOI: https://doi.org/10.1016/j.soilbio.2023.109248
Dam, Paulami, M. Paret, Rittick Mondal y A. Mandal. 2022. Advancement of noble metallic nanoparticles in agriculture — A promising future: a review. Pedosphere. https://doi.org/10.1016/j.pedsph.2022.06.026. DOI: https://doi.org/10.1016/j.pedsph.2022.06.026
Dey, Swarnali, Nilanjana Ghosh, Shreya Nath, G. Gopal, Surupa Paul, Amitava Mukherjee, Subhabrata Paul y Rita Kundu. 2024. Application of multi-metallic nanoparticles in agriculture: the more, the better? Biocatalysis and Agricultural Biotechnology. https://doi.org/10.1016/j.bcab.2024.103238. DOI: https://doi.org/10.1016/j.bcab.2024.103238
Fatima, Faria, Arshya Hashim y Sumaiya Anees. 2021. Efficacy of nanoparticles as nanofertilizer production: a review. Environmental Science and Pollution Research, 28(2): 1292-1303. https://doi.org/10.1007/s11356-020-11218-9. DOI: https://doi.org/10.1007/s11356-020-11218-9
Fernández-Luqueño, Fabián, Ileana Vera-Reyes y Sandra Loera-Serna. 2022. Presentación. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 16(30): 1e-7e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69784. DOI: https://doi.org/10.22201/ceiich.24485691e.2023.30.69784
Francis, D., Abdelmoneim Abdalla, W. Mahakham, Ajit Sarmah y Zienab Ahmed. 2024. Interaction of plants and metal nanoparticles: exploring its molecular mechanisms for sustainable agriculture and crop improvement. Environment International, 190: 108859. https://doi.org/10.1016/j.envint.2024.108859. DOI: https://doi.org/10.1016/j.envint.2024.108859
Frenk, Sammy, Tal Ben-Moshe, Ishai Dror, Brian Berkowitz y Dror Minz. 2013. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One, 8(12): e84441. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084441. DOI: https://doi.org/10.1371/journal.pone.0084441
Geetha, P., M. S. Latha, Saumya S. Pillai, B. Deepa, K. Santhosh Kumar y Mathew Koshy. 2016. Green synthesis and characterization of alginate nanoparticles and its role as a biosorbent for Cr(VI) ions. Journal of Molecular Structure, 1105: 54-60. https://www.sciencedirect.com/science/article/pii/S0022286015303227. DOI: https://doi.org/10.1016/j.molstruc.2015.10.022
Geisler-Lee, Jane, Marjorie Brooks, Jacob R. Gerfen, Qiang Wang, Christin Fotis, Anthony Sparer, Xingmao Ma, R. Howard Berg y Matt Geisler. 2014. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials (Basel, Switzerland), 4(2): 301-318. https://doi.org/10.3390/NANO4020301. DOI: https://doi.org/10.3390/nano4020301
Geisler-Lee, Jane, Wang Qiang, Yao Ying, Zhang Wen, Geisler Matt, Li Kungang, Huang Ying, Chen Yongsheng, Kolmakov Andrei y Xingmao Ma. 2013. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology, 7(3): 323-337. https://doi.org/10.3109/17435390.2012.658094. DOI: https://doi.org/10.3109/17435390.2012.658094
Geng, Min, Linlin Li, Mingjun Ai, Jun Jin, Die Hu y Kai Song. 2022. Recent advances in metal-based nanoparticle-mediated biological effects in Arabidopsis thaliana: a mini review. Materials, 15(13): 4539-4539. https://doi.org/10.3390/MA15134539. https://www.mdpi.com/1996-1944/15/13/4539/htm. DOI: https://doi.org/10.3390/ma15134539
Grün, Anna Lena, Werner Manz, Yvonne Lydia Kohl, Florian Meier, Susanne Straskraba, Carsten Jost, Roland Drexel y Christoph Emmerling. 2019. Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time and soil texture. Environmental Sciences Europe, 31(1): 1-22. https://doi.org/10.1186/S12302-019-0196-Y/TABLES/4. DOI: https://doi.org/10.1186/s12302-019-0196-y
Harshiny, Muthukumar, Chandrasekaran Nivedhini Iswarya y Manickam Matheswaran. 2015. Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technology, 286: 744-749. https://doi.org/https://doi.org/10.1016/j.powtec.2015.09.021. DOI: https://doi.org/10.1016/j.powtec.2015.09.021
Holland, C. y J. Jez. 2018. Arabidopsis: the original plant chassis organism. Plant Cell Reports, 37: 1359-1366. https://doi.org/10.1007/s00299-018-2286-5. DOI: https://doi.org/10.1007/s00299-018-2286-5
Jain, Aditi, Ranjan Shivendu, Dasgupta Nandita y Chidambaram and Ramalingam. 2018. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Critical Reviews in Food Science and Nutrition, 58(2): 297-317. https://doi.org/10.1080/10408398.2016.1160363. DOI: https://doi.org/10.1080/10408398.2016.1160363
Jamkhande, Prasad Govindrao, Namrata W. Ghule, Abdul Haque Bamer y Mohan G. Kalaskar. 2019. Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53: 101174. https://doi.org/https://doi.org/10.1016/j.jddst.2019.101174. DOI: https://doi.org/10.1016/j.jddst.2019.101174
Jin, Yujian, Xiaoji Fan, Xingxing Li, Zhenyan Zhang, Liwei Sun, Z. Fu, M. Lavoie, Xiangliang Pan y H. Qian. 2017. Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum. Environmental pollution, 228: 517-527. https://doi.org/10.1016/j.envpol.2017.04.073. DOI: https://doi.org/10.1016/j.envpol.2017.04.073
Jośko, Izabela, Patryk Oleszczuk, Joanna Dobrzyńska, Barbara Futa, Jolanta Joniec y Ryszard Dobrowolski. 2019. Long-term effect of ZnO and CuO nanoparticles on soil microbial community in different types of soil. Geoderma, 352: 204-212. https://doi.org/10.1016/J.GEODERMA.2019.06.010. DOI: https://doi.org/10.1016/j.geoderma.2019.06.010
Judy, Jonathan D., Jason M. Unrine, William Rao y Paul M. Bertsch. 2012. Bioaccumulation of gold nanomaterials by manduca sextathrough dietary uptake of surface contaminated plant tissue. Environmental Science & Technology, 46(22): 12672-12678. https://doi.org/10.1021/es303333w. DOI: https://doi.org/10.1021/es303333w
Kang, Minghui, Haolin Wu, Wenyu Liu, Mingjia Zhu, Yu Han, Wei Liu, Chun‐Lin Chen, Kangqun Yin, Yusen Zhao, Zheng Yan, Huanhuan Liu, Shangling Lou, Y. Zan y Jianquan Liu. 2022. The pan-genome and local adaptation of Arabidopsis thaliana. Nature Communications, 14. https://doi.org/10.1101/2022.12.18.520013. DOI: https://doi.org/10.1101/2022.12.18.520013
Kaveh, Rashid, Yue Sheng Li, Sibia Ranjbar, Rouzbeh Tehrani, Christopher L. Brueck y Benoit Van Aken. 2013. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science and Technology, 47(18): 10637-10644. https://pubs.acs.org/doi/abs/10.1021/es402209w. DOI: https://doi.org/10.1021/es402209w
Ke, Mingjing, Qian Qu, W. J. G. M. Peijnenburg, Xingxing Li, Meng Zhang, Zhenyan Zhang, Tao Lu, Xiangliang Pan y Haifeng Qian. 2018a. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Science of The Total Environment, 644: 1070-1079. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.07.061.
Ke, Mingjing, Qian Qu, W. Peijnenburg, Xingxing Li, Meng Zhang, Zhenyan Zhang, Tao Lu, Xiangliang Pan y H. Qian. 2018b. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. The Science of The Total Environment, 644: 1070-1079. https://doi.org/10.1016/j.scitotenv.2018.07.061. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.061
Khan, Shams Tabrez, Syed Farooq Adil, Mohammed Rafi Shaik, Hamad Z. Alkhathlan, Merajuddin Khan y Mujeeb Khan. 2021. Engineered nanomaterials in soil: their impact on soil microbiome and plant health. Plants, 11(1): 109. https://doi.org/10.3390/PLANTS11010109. DOI: https://doi.org/10.3390/plants11010109
Kibbey, Tohren C. G. y Keith A. Strevett. 2019. The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings. Chemosphere, 221: 703-707. https://doi.org/10.1016/J.CHEMOSPHERE.2019.01.091. DOI: https://doi.org/10.1016/j.chemosphere.2019.01.091
Kim, Sun-Jung y Bong Hyun Chung. 2016. Antioxidant activity of levan coated cerium oxide nanoparticles. Carbohydrate Polymers, 150: 400-407. https://doi.org/https://doi.org/10.1016/j.carbpol.2016.05.021. DOI: https://doi.org/10.1016/j.carbpol.2016.05.021
Klepikova, A., A. Kasianov, E. Gerasimov, M. Logacheva y A. Penin. 2016. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. The Plant Journal : for cell and molecular biology, 88 6: 1058-1070. https://doi.org/10.1111/tpj.13312. DOI: https://doi.org/10.1111/tpj.13312
Koch, M. 2018. The plant model system Arabidopsis set in an evolutionary, systematic y spatio-temporal context. Journal of Experimental Botany, 70(1): 55-67. https://doi.org/10.1093/jxb/ery340. DOI: https://doi.org/10.1093/jxb/ery340
Kumar, Vineet, P. Guleria, Vinay Kumar y S. Yadav. 2013. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. The Science of The Total Environment, 461-462: 462-468. https://doi.org/10.1016/j.scitotenv.2013.05.018. DOI: https://doi.org/10.1016/j.scitotenv.2013.05.018
Landa, Premysl, P. Dytrych, Sylva Přerostová, Š Petrová, Radormira Vaňková y T. Vanek. 2017. Transcriptomic response of Arabidopsis thaliana exposed to CuO nanoparticles, bulk material, and ionic copper. Environmental Science & Technology, 51 18: 10814-10824. https://doi.org/10.1021/acs.est.7b02265. DOI: https://doi.org/10.1021/acs.est.7b02265
Landa, Premysl, Radomira Vankova, Jana Andrlova, Jan Hodek, Petr Marsik, Helena Storchova, Jason C. White y Tomas Vanek. 2012. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO₂ , and fullerene soot. Journal of Hazardous Materials, 241-242: 55-62. https://doi.org/10.1016/J.JHAZMAT.2012.08.059. DOI: https://doi.org/10.1016/j.jhazmat.2012.08.059
Lee, Chang Woo, Shaily Mahendra, Katherine Zodrow, Dong Li, Yu Chang Tsai, Janet Braam y Pedro J. J. Álvarez. 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry, 29(3): 669-675. https://doi.org/10.1002/ETC.58. DOI: https://doi.org/10.1002/etc.58
Li, Xingxing, Mingjing Ke, Meng Zhang, W. Peijnenburg, Xiaoji Fan, Jiahui Xu, Zhenyan Zhang, Tao Lu, Z. Fu y H. Qian. 2018a. The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: growth, photosynthesis and antioxidant system. Environmental Pollution, 232: 212-219. https://doi.org/10.1016/j.envpol.2017.09.034.
Li, Xingxing, Mingjing Ke, Meng Zhang, W. J. G. M. Peijnenburg, Xiaoji Fan, Jiahui Xu, Zhenyan Zhang, Tao Lu, Zhengwei Fu y Haifeng Qian. 2018b. The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: growth, photosynthesis and antioxidant system. Environmental Pollution, 232: 212-219. https://doi.org/10.1016/J.ENVPOL.2017.09.034. DOI: https://doi.org/10.1016/j.envpol.2017.09.034
Liu, Jia, Philip C. Williams, Jane Geisler-Lee, Boyd M. Goodson, Masoud Fakharifar, Meisam Peiravi, Da Chen, David A. Lightfoot y Max E. Gemeinhardt. 2018. Impact of wastewater effluent containing aged nanoparticles and other components on biological activities of the soil microbiome, Arabidopsis plants and earthworms. Environmental Research, 164: 197-203. https://doi.org/10.1016/J.ENVRES.2018.02.006. DOI: https://doi.org/10.1016/j.envres.2018.02.006
Liu, Jia, Philip C. Williams, Boyd M. Goodson, Jane Geisler-Lee, Masoud Fakharifar y Max E. Gemeinhardt. 2019. TiO₂ nanoparticles in irrigation water mitigate impacts of aged Ag nanoparticles on soil microorganisms, Arabidopsis thaliana plants, and Eisenia fetida earthworms. Environmental Research, 172: 202-215. https://doi.org/10.1016/J.ENVRES.2019.02.010. DOI: https://doi.org/10.1016/j.envres.2019.02.010
Ma, Chuanxin, Sudesh Chhikara, Baoshan Xing, Craig Musante, Jason C. White y Om Parkash Dhankher. 2013. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustainable Chemistry & Engineering, 1(7): 768-778. https://doi.org/10.1021/sc400098h. DOI: https://doi.org/10.1021/sc400098h
Macůrková, A., L. Maryška, B. Jindřichová, T. Drobníková, B. Vrchotová, R. Pospíchalová, K. Záruba, T. Hubáček, J. Siegel, L. Burketová, P. Lovecká y O. Valentová. 2021. Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and “soil-plant” systems. Applied Soil Ecology, 168: 104165. https://doi.org/10.1016/J.APSOIL.2021.104165. DOI: https://doi.org/10.1016/j.apsoil.2021.104165
Maity, D., U. Gupta y S. Saha. 2022. Biosynthesized metal oxide nanoparticles for sustainable agriculture: next-generation nanotechnology for crop production, protection and management. Nanoscale. https://doi.org/10.1039/d2nr03944c. DOI: https://doi.org/10.1039/D2NR03944C
Mathew, Mabel Maria y Kalika Prasad. 2021. Model systems for regeneration: Arabidopsis. Development 148. https://doi.org/10.1242/dev.195347. DOI: https://doi.org/10.1242/dev.195347
Milewska-Hendel, Anna, Maciej Zubko, Danuta Stróż y Ewa U. Kurczyńska. 2019. Effect of nanoparticles surface charge on the Arabidopsis thaliana (L.) roots development and their movement into the root cells and protoplasts. International Journal of Molecular Sciences, 20(7). https://doi.org/10.3390/ijms20071650. DOI: https://doi.org/10.3390/ijms20071650
Mu, Dan, Yinghui Liang, Wenhui Zhang y Yucheng Wang. 2018. Investigation on tree molecular genome of Arabidopsis thaliana for Internet of Things. IEEE Access, 6: 67688-67698. https://doi.org/10.1109/ACCESS.2018.2877411. DOI: https://doi.org/10.1109/ACCESS.2018.2877411
Nair, Prakash M. Gopalakrishnan y Ill Min Chung. 2017. Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings in response to ZnO nanoparticles and Zn ion exposure. Science of The Total Environment, 575: 187-198. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.10.017. DOI: https://doi.org/10.1016/j.scitotenv.2016.10.017
Parashar, Srishti, Sheetal Raj, Priyanka Srivastava y Abhishek Kumar Singh. 2024. Comparative toxicity assessment of selected nanoparticles using different experimental model organisms. Journal of Pharmacological and Toxicological Methods, 130: 107563. https://doi.org/https://doi.org/10.1016/j.vascn.2024.107563. DOI: https://doi.org/10.1016/j.vascn.2024.107563
Peyrot, Caroline, Kevin J. Wilkinson, Mélanie Desrosiers y Sébastien Sauvé. 2013. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environmental Toxicology and Chemistry, 33(1): 115-125. https://doi.org/10.1002/etc.2398. https://doi.org/10.1002/etc.2398. DOI: https://doi.org/10.1002/etc.2398
Qian, Haifeng, Xiaofeng Peng, Xiao Han, Jie Ren, Liwei Sun y Zhengwei Fu. 2013. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Sci- ences, 25(9): 1947-1956. https://doi.org/10.1016/S1001-0742(12)60301-5. DOI: https://doi.org/10.1016/S1001-0742(12)60301-5
Racca, Luisa, Marta Canta, Bianca Dumontel, Andrea Ancona, Tania Limongi, Nadia Garino, Marc, Laurenti, Giancarlo Canavese y Valentina Cauda. 2018. 12-Zinc oxide nanostructures in biomedicine. En Smart Nanoparticles for Biomedicine, edited by Gianni Ciofani, Elsevier, 171-187. DOI: https://doi.org/10.1016/B978-0-12-814156-4.00012-4
Rajput, Vishnu D., Tatiana Minkina, Morteza Feizi, Arpna Kumari, Masudulla Khan, Saglara Mandzhieva, Svetlana Sushkova, Hassan El‐ramady, Krishan K. Verma, Abhishek Singh, Eric D. van Hullebusch, Rupesh Kumar Singh, Hanuman Singh Jatav y Ravish Choudhary. 2021. Effects of silicon and silicon-based nanoparticles on rhizosphere microbiome, plant stress and growth. Biology, 10(8): 791. https://www.mdpi.com/2079-7737/10/8/791/htm. DOI: https://doi.org/10.3390/biology10080791
Rippner, Devin A., Peter G. Green, Thomas M. Young y Sanjai J. Parikh. 2018. Dissolved organic matter reduces CuO nanoparticle toxicity to duckweed in simulated natural systems. Environmental Pollution, 234: 692-698. https://doi.org/https://doi.org/10.1016/j.envpol.2017.12.014. DOI: https://doi.org/10.1016/j.envpol.2017.12.014
Rohela, Gulab Khan, Pawan Saini, Danishta Aziz, Summira Rafiq, Phanikanth Jogam y Baohong Zhang. 2024. Nanoparticles as elicitors and stimulators for plant tissue culture, transgenics, and genome editing: a comprehensive review. Industrial Crops and Products, 222: 120097. https://doi.org/https://doi.org/10.1016/j.indcrop.2024.120097. DOI: https://doi.org/10.1016/j.indcrop.2024.120097
Ruales-Lonfat, C., J. F. Barona, A. Sienkiewicz, M. Bensimon, J. Vélez-Colmenares, N. Benítez y C. Pulgarín. 2015. Iron oxides semiconductors are efficients for solar water disinfection: a comparison with photo-Fenton processes at neutral pH. Applied Catalysis B: Environmental, 166-167: 497-508. https://doi.org/https://doi.org/10.1016/j.apcatb.2014.12.007. DOI: https://doi.org/10.1016/j.apcatb.2014.12.007
Ryu, Chung-Hyeon, Sung-Jun Joo y Hak-Sung Kim. 2016. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping. Applied Surface Science, 384: 182-191. https://doi.org/https://doi.org/10.1016/j.apsusc.2016.05.025. DOI: https://doi.org/10.1016/j.apsusc.2016.05.025
Saleem, Haleema y Syed Javaid Zaidi. 2020. Recent developments in the application of nanomaterials in agroecosystems. Nanomaterials, 10(12): 2411. https://www.mdpi.com/2079-4991/10/12/2411. DOI: https://doi.org/10.3390/nano10122411
Santás-Miguel, V., M. Arias-Estévez, Andrés Rodríguez-Seijo y D. Arenas-Lago. 2023. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environmental pollution: 122222. https://doi.org/10.1016/j.envpol.2023.122222. DOI: https://doi.org/10.1016/j.envpol.2023.122222
Shull, Timothy E., Jasmina Kurepa y Jan A. Smalle. 2019. Anatase TiO₂ nanoparticles induce autophagy and chloroplast degradation in thale cress (Arabidopsis thaliana). Environmental Science and Technology, 53(16): 9522-9532. https://pubs.acs.org/doi/abs/10.1021/acs.est.9b01648. DOI: https://doi.org/10.1021/acs.est.9b01648
Siegel, Jakub, Kamil Záruba, Václav Švorčík, Kristýna Kroumanová, Lenka Burketová y Jan Martinec. 2018. Round-shape gold nanoparticles: effect of particle size and concentration on Arabidopsis thaliana root growth. Nanoscale Research Letters, 13(1): 95. https://doi.org/10.1186/s11671-018-2510-9. DOI: https://doi.org/10.1186/s11671-018-2510-9
Singh, Pooja, Vanya Nayak, Ranjana Verma, Arunadevi Natarajan, Jay Singh, Shyam Pandey y Kshitji R. B. Singh. 2024. Comprehensive perspective of sustainable nanostructured metal and metal oxide towards agriculture utility for precision farming. Biocatalysis and Agricultural Biotechnology. https://doi.org/10.1016/j.bcab.2024.103457. DOI: https://doi.org/10.1016/j.bcab.2024.103457
Somssich, Marc. 2022. The dawn of plant molecular biology: how three key methodologies paved the way. Current Protocols, 2. https://doi.org/10.1002/cpz1.417. DOI: https://doi.org/10.1002/cpz1.417
Sosan, Arifa, D. Svistunenko, Darya Straltsova, Katsiaryna Tsiurkina, I. Smolich, T. Lawson, S. Subramaniam, V. Golovko, David Anderson, A. Sokolik, Ian Colbeck y V. Demidchik. 2016a. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. The Plant Journal : for cell and molecular biology, 85(2): 245-257. https://doi.org/10.1111/tpj.13105.
Sosan, Arifa, Dimitri Svistunenko, Darya Straltsova, Katsiaryna Tsiurkina, Igor Smolich, Tracy Lawson, Sunitha Subramaniam, Vladimir Golovko, David Anderson, Anatoliy Sokolik, Ian Colbeck y Vadim Demidchik. 2016b. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. The Plant Journal, 85(2): 245-257. https://doi.org/10.1111/TPJ.13105. DOI: https://doi.org/10.1111/tpj.13105
Syed, Baker, Nagendra M. N. Prasad y Sreedharamurthy Satish. 2016. Endogenic mediated synthesis of gold nanoparticles bearing bactericidal activity. Journal of Microscopy and Ultrastructure, 4(3): 162-166. https://doi.org/https://doi.org/10.1016/j.jmau.2016.01.004. DOI: https://doi.org/10.1016/j.jmau.2016.01.004
Syu, You-yu, Jui-Hung Hung, Jui-Chang Chen y Huey-wen Chuang. 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 83: 57-64. https://doi.org/https://doi.org/10.1016/j.plaphy.2014.07.010. DOI: https://doi.org/10.1016/j.plaphy.2014.07.010
Szymańska, Renata, Karolina Kołodziej, Ireneusz Ślesak, Paulina Zimak-Piekarczyk, Aleksandra Orzechowska, Michał Gabruk, Andrzej Zadło, Iwona Habina, Wiesław Knap, Květoslava Burda y Jerzy Kruk. 2016. Titanium dioxide nanoparticles (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana. Environmental Pollution, 213: 957-965. https://doi.org/10.1016/J.ENVPOL.2016.03.026. DOI: https://doi.org/10.1016/j.envpol.2016.03.026
Tang, Yulin, Rong He, Jian Zhao, Guangli Nie, Lina Xu y Baoshan Xing. 2016. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environmental Pollution, 212: 605-614. https://doi.org/10.1016/J.ENVPOL.2016.03.019. DOI: https://doi.org/10.1016/j.envpol.2016.03.019
Tian, Liyan, Jupei Shen, Guoxin Sun, Bin Wang, Rong Ji y Lijuan Zhao. 2020. Foliar application of SiO₂ nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L.) rhizosphere grown in contaminated mine soil. Environmental Science and Technology, 54(20): 13137-13146. https://pubs.acs.org/doi/abs/10.1021/acs.est.0c03767. DOI: https://doi.org/10.1021/acs.est.0c03767
Tumburu, L., C. P. Andersen, P. T. Rygiewicz y J. R. Reichman. 2017. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis. Environ. Toxicol. Chem., 36(1): 71-82. https://doi.org/10.1002/etc.3500. DOI: https://doi.org/10.1002/etc.3500
Ulhassan, Zaid, I. Khan, M. Hussain, Ali Raza Khan, Y. Hamid, S. Hussain, S. Allakhverdiev y Weijun Zhou. 2022. Efficacy of metallic nanoparticles in attenuating the accumulation and toxicity of chromium in plants: current knowledge and future perspectives. Environmental pollution: 120390. https://doi.org/10.1016/j.envpol.2022.120390. DOI: https://doi.org/10.1016/j.envpol.2022.120390
Vaňková, R., P. Landa, R. Podlipná, P. Dobrev, Sylva Přerostová, L. Langhansová, A. Gaudinova, K. Moťková, Vojtech Knirsch y T. Vanek. 2017. ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. The Science of The Total Environment 593-594: 535-542. https://doi.org/10.1016/j.scitotenv.2017.03.160.
Vankova, Radomira, Premysl Landa, Radka Podlipna, Petre I. Dobrev, Sylva Prerostova, Lenka Langhansova, Alena Gaudinova, Katerina Motkova, Vojtech Knirsch y Tomas Vanek. 2017. ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Science of The Total Environment, 593-594: 535-542. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.03.160. DOI: https://doi.org/10.1016/j.scitotenv.2017.03.160
Wang, Zhenyu, Lina Xu, Jian Zhao, Xiangke Wang, J. White y B. Xing. 2016. CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environmental science & technology, 50(11): 6008-6016. https://doi.org/10.1021/acs.est.6b01017. DOI: https://doi.org/10.1021/acs.est.6b01017
Wu, Honghong, Nicholas Tito y Juan P. Giraldo. 2017. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano, 11(11): 11283-11297. https://pubs.acs.org/doi/abs/10.1021/acsnano.7b05723. DOI: https://doi.org/10.1021/acsnano.7b05723
Xie, Changjian, Zhiling Guo, Peng Zhang, Jie Yang, Junzhe Zhang, Yuhui Ma, Xiao He, Iseult Lynch y Zhiyong Zhang. 2022. Effect of CeO₂ nanoparticles on plant growth and soil microcosm in a soil-plant interactive system. Environmental Pollution, 300: 118938-118938. https://doi.org/10.1016/J.ENVPOL.2022.118938. DOI: https://doi.org/10.1016/j.envpol.2022.118938
Xu, Nuohan, Jian Kang, Yangqing Ye, Qi Zhang, Mingjing Ke, Yufei Wang, Zhenyan Zhang, Tao Lu, W. J. G. M. Peijnenburg, Penuelas Josep, Guanjun Bao y Haifeng Qian. 2022. Machine learning predicts ecological risks of nanoparticles to soil microbial communities. Environmental Pollution, 307: 119528-119528. https://doi.org/10.1016/J.ENVPOL.2022.119528. DOI: https://doi.org/10.1016/j.envpol.2022.119528
Yang, S., R. Yin, C. Wang, Y. Yang y J. Wang. 2023. Phytotoxicity of zinc oxide nanoparticles and multi-walled carbon nanotubes, alone or in combination, on Arabidopsis thaliana and their mutual effects on oxidative homeostasis. PLoS One, 18(2): e0281756. https://doi.org/10.1371/journal.pone.0281756. DOI: https://doi.org/10.1371/journal.pone.0281756
Yaschenko, Anna, Jose Alonso y A. Stepanova. 2024. Arabidopsis as a model for translational research. The Plant Cell. https://doi.org/10.1093/plcell/koae065. DOI: https://doi.org/10.1093/plcell/koae065
Yoon, Hakwon, Yu-Gyeong Kang, Yoon-Seok Chang y Jae-Hwan Kim. 2019. Effects of Zerovalent iron nanoparticles on photosynthesis and biochemical adaptation of soil-grown Arabidopsis thaliana. Nanomaterials, 9(11). https://doi.org/10.3390/nano9111543. DOI: https://doi.org/10.3390/nano9111543
Zango, Zakariyya Uba, Abdurrahman Garba, Fatimah Bukola Shittu, Saifullahi Shehu Imam, Abdurrashid Haruna, Muttaqa Uba Zango, Ismael A. Wadi, Usman Bello, Haruna Adamu, Basem E. Keshta, Dmitry Olegovich Bokov, Omirserik Baigenzhenov y Ahmad Hosseini-Bandegharaei. 2025. A state-of-the-art review on green synthesis and modifications of ZnO nanoparticles for organic pollutants decomposition and CO₂ conversion. Journal of Hazardous Materials Advances, 17: 100588. https://doi.org/https://doi.org/10.1016/j.hazadv.2024.100588. DOI: https://doi.org/10.1016/j.hazadv.2024.100588