Arabidopsis thaliana: una década como modelo de estudio de los efectos negativos de nanopartículas metálicas

Contenido principal del artículo

Diego F. Monroy-Macías
https://orcid.org/0009-0008-7683-8404
Luis A. Martínez-Chávez
https://orcid.org/0000-0003-4514-3593
Ana A. Feregrino-Pérez
https://orcid.org/0000-0001-8001-5912
Karen Esquivel-Escalante
https://orcid.org/0000-0003-1838-7058

Resumen

En la última década, Arabidopsis thaliana se ha consolidado como un organismo modelo clave para estudiar los efectos adversos de nanopartículas metálicas (MNPs) en plantas. Este artículo presenta una revisión sistemática de literatura científica reciente (2015-2025), enfocada en los efectos fisiológicos, moleculares y ecológicos provocados por diferentes tipos de MNPs, como Ag, Au, Cu, ZnO y TiO₂, sobre esta especie vegetal. Se recopilan hallazgos sobre inhibición del crecimiento, alteraciones en la fotosíntesis, retraso en la floración, estrés oxidativo, desequilibrios hormonales y cambios en la expresión génica. Asimismo, se discuten los impactos indirectos a través de la alteración de la microbiota del suelo. La revisión destaca que los efectos tóxicos de las MNPs pueden depender de factores como el tamaño, la forma, la carga superficial y la concentración. Se concluye que A. thaliana representa una herramienta predictiva útil para evaluar el riesgo ecológico de las MNPs y apoyar el desarrollo de marcos regulatorios en nanotecnología agrícola.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Monroy-Macías, D. F., Martínez-Chávez, L. A., Feregrino-Pérez , A. A., & Esquivel-Escalante, K. (2026). Arabidopsis thaliana: una década como modelo de estudio de los efectos negativos de nanopartículas metálicas. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 19(37), e69869. https://doi.org/10.22201/ceiich.24485691e.2026.37.69869
Sección
Artículos de revisión

Citas

Ali, Shahid, Asif Mehmood y Naeem Khan. 2021. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, 2021(1): 6677616. https://doi.org/10.1155/2021/6677616. DOI: https://doi.org/10.1155/2021/6677616

Ameen, Fuad, Khawla Alsamhary, Jamila A. Alabdullatif y Saleh Alnadhari. 2021. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety, 213: 112027. https://doi.org/10.1016/J.ECOENV.2021.112027. DOI: https://doi.org/10.1016/j.ecoenv.2021.112027

Asadishad, Bahareh, Shawninder Chahal, Ali Akbari, Vanessa Cianciarelli, Mehrnoosh Azodi, Subhasis Ghoshal y Nathalie Tufenkji. 2018. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environmental Science and Technology, 52(4): 1908-1918. https://pubs.acs.org/doi/abs/10.1021/acs.est.7b05389. DOI: https://doi.org/10.1021/acs.est.7b05389

Ashraf, Syed Amir, Arif Jamal Siddiqui, Abd Elmoneim O. Elkhalifa, Mohammed Idrees Khan, Mitesh Patel, Mousa Alreshidi, Afrasim Moin, Ritu Singh, Mejdi Snoussi y Mohd Adnan. 2021. Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Science of The Total Environment, 768: 144990. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.144990. DOI: https://doi.org/10.1016/j.scitotenv.2021.144990

Awet, T. T., Y. Kohl, F. Meier, S. Straskraba, A. L. Grün, T. Ruf, C. Jost, R. Drexel, E. Tunc y C. Emmerling. 2018. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environmental Sciences Europe, 30(1): 1-10. https://doi.org/10.1186/S12302-018-0140-6/FIGURES/3. https://enveurope.springeropen.com/articles/10.1186/s12302-018-0140-6. DOI: https://doi.org/10.1186/s12302-018-0140-6

Azhar, Wardah, Ali Raza Khan, Noor Muhammad, Bohan Liu, Ge Song, Akhlaq Hussain, Muhammad Umair Yasin, Sulaiman Khan, Raheel Munir y Yinbo Gan. 2020. Ethylene mediates CuO NP-induced ultrastructural changes and oxidative stress in Arabidopsis thaliana leaves. Environmental Science: Nano, 7(3): 938-953. https://doi.org/10.1039/C9EN01302D. http://dx.doi.org/10.1039/C9EN01302D. DOI: https://doi.org/10.1039/C9EN01302D

Babu, E. R., Nagaraja C. Reddy, Atul Babbar, A. Chandrashekar, Raman Kumar, Pardeep Singh Bains, Majed Alsubih, Saiful Islam, Sanjeev Kumar Joshi, Achmad Rizal y Muhammad Imam Ammarullah. 2024. Characteristics of pulsating heat pipe with variation of tube diameter, filling ratio, and SiO₂ nanoparticles: biomedical and engineering implications. Case Studies in Thermal Engineering, 55: 104065. https://doi.org/https://doi.org/10.1016/j.csite.2024.104065. DOI: https://doi.org/10.1016/j.csite.2024.104065

Berger, Mauricio Sebastian y Wilson Engelmann. 2025. Nanotecnología en agricultura: jurisdicciones epistémicas y desafíos regulatorios en Argentina y Brasil. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 18(34): e69823. https://doi.org/10.22201/ceiich.24485691e.2025.34.69823. DOI: https://doi.org/10.22201/ceiich.24485691e.2025.34.69823

Bombin, S., M. LeFebvre, J. Sherwood, Y. Xu, Y. Bao y K. M. Ramonell. 2015. Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int. J. Mol. Sci., 16(10): 24174-93. https://doi.org/10.3390/ijms161024174. DOI: https://doi.org/10.3390/ijms161024174

Camara, Marcela Candido, Estefânia Vangelie Ramos Campos, Renata Aparecida Monteiro, Anderson do Espirito Santo Pereira, Patrícia Luiza de Freitas Proença y Leonardo Fernandes Fraceto. 2019. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. Journal of Nanobiotechnology, 17(1): 100. https://doi.org/10.1186/s12951-019-0533-8. DOI: https://doi.org/10.1186/s12951-019-0533-8

Cao, Jiamei, Yongqiang Feng, Baoyong Liu y Hongguang Li. 2018. Carbon skeleton doped with Co, N, S and P as efficient electrocatalyst for oxygen evolution reaction. Science China Materials, 61(5): 686-696. https://doi.org/10.1007/s40843-017-9149-y. DOI: https://doi.org/10.1007/s40843-017-9149-y

Castillo-Henríquez, Luis, Karla Alfaro-Aguilar, Jeisson Ugalde-Álvarez, Laura Vega-Fernández, Gabriela Montes de Oca-Vásquez y José Roberto Vega-Baudrit. 2020. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials, 10(9): 1763. https://www.mdpi.com/2079-4991/10/9/1763. DOI: https://doi.org/10.3390/nano10091763

Chavan, Sangeeta y Vigneshwaran Nadanathangam. 2019. Effects of nanoparticles on plant growth-promoting bacteria in Indian agricultural soil. Agronomy, 9(3): 140. https://www.mdpi.com/2073-4395/9/3/140/htm. DOI: https://doi.org/10.3390/agronomy9030140

Chen, Sensen, Ying Teng, Yongming Luo, Eiko Kuramae y Wenjie Ren. 2024. Threats to the soil microbiome from nanomaterials: a global meta and machine-learning analysis. Soil Biology and Biochemistry, 188: 109248. https://doi.org/https://doi.org/10.1016/j.soilbio.2023.109248. DOI: https://doi.org/10.1016/j.soilbio.2023.109248

Dam, Paulami, M. Paret, Rittick Mondal y A. Mandal. 2022. Advancement of noble metallic nanoparticles in agriculture — A promising future: a review. Pedosphere. https://doi.org/10.1016/j.pedsph.2022.06.026. DOI: https://doi.org/10.1016/j.pedsph.2022.06.026

Dey, Swarnali, Nilanjana Ghosh, Shreya Nath, G. Gopal, Surupa Paul, Amitava Mukherjee, Subhabrata Paul y Rita Kundu. 2024. Application of multi-metallic nanoparticles in agriculture: the more, the better? Biocatalysis and Agricultural Biotechnology. https://doi.org/10.1016/j.bcab.2024.103238. DOI: https://doi.org/10.1016/j.bcab.2024.103238

Fatima, Faria, Arshya Hashim y Sumaiya Anees. 2021. Efficacy of nanoparticles as nanofertilizer production: a review. Environmental Science and Pollution Research, 28(2): 1292-1303. https://doi.org/10.1007/s11356-020-11218-9. DOI: https://doi.org/10.1007/s11356-020-11218-9

Fernández-Luqueño, Fabián, Ileana Vera-Reyes y Sandra Loera-Serna. 2022. Presentación. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 16(30): 1e-7e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69784. DOI: https://doi.org/10.22201/ceiich.24485691e.2023.30.69784

Francis, D., Abdelmoneim Abdalla, W. Mahakham, Ajit Sarmah y Zienab Ahmed. 2024. Interaction of plants and metal nanoparticles: exploring its molecular mechanisms for sustainable agriculture and crop improvement. Environment International, 190: 108859. https://doi.org/10.1016/j.envint.2024.108859. DOI: https://doi.org/10.1016/j.envint.2024.108859

Frenk, Sammy, Tal Ben-Moshe, Ishai Dror, Brian Berkowitz y Dror Minz. 2013. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One, 8(12): e84441. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084441. DOI: https://doi.org/10.1371/journal.pone.0084441

Geetha, P., M. S. Latha, Saumya S. Pillai, B. Deepa, K. Santhosh Kumar y Mathew Koshy. 2016. Green synthesis and characterization of alginate nanoparticles and its role as a biosorbent for Cr(VI) ions. Journal of Molecular Structure, 1105: 54-60. https://www.sciencedirect.com/science/article/pii/S0022286015303227. DOI: https://doi.org/10.1016/j.molstruc.2015.10.022

Geisler-Lee, Jane, Marjorie Brooks, Jacob R. Gerfen, Qiang Wang, Christin Fotis, Anthony Sparer, Xingmao Ma, R. Howard Berg y Matt Geisler. 2014. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials (Basel, Switzerland), 4(2): 301-318. https://doi.org/10.3390/NANO4020301. DOI: https://doi.org/10.3390/nano4020301

Geisler-Lee, Jane, Wang Qiang, Yao Ying, Zhang Wen, Geisler Matt, Li Kungang, Huang Ying, Chen Yongsheng, Kolmakov Andrei y Xingmao Ma. 2013. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology, 7(3): 323-337. https://doi.org/10.3109/17435390.2012.658094. DOI: https://doi.org/10.3109/17435390.2012.658094

Geng, Min, Linlin Li, Mingjun Ai, Jun Jin, Die Hu y Kai Song. 2022. Recent advances in metal-based nanoparticle-mediated biological effects in Arabidopsis thaliana: a mini review. Materials, 15(13): 4539-4539. https://doi.org/10.3390/MA15134539. https://www.mdpi.com/1996-1944/15/13/4539/htm. DOI: https://doi.org/10.3390/ma15134539

Grün, Anna Lena, Werner Manz, Yvonne Lydia Kohl, Florian Meier, Susanne Straskraba, Carsten Jost, Roland Drexel y Christoph Emmerling. 2019. Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time and soil texture. Environmental Sciences Europe, 31(1): 1-22. https://doi.org/10.1186/S12302-019-0196-Y/TABLES/4. DOI: https://doi.org/10.1186/s12302-019-0196-y

Harshiny, Muthukumar, Chandrasekaran Nivedhini Iswarya y Manickam Matheswaran. 2015. Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technology, 286: 744-749. https://doi.org/https://doi.org/10.1016/j.powtec.2015.09.021. DOI: https://doi.org/10.1016/j.powtec.2015.09.021

Holland, C. y J. Jez. 2018. Arabidopsis: the original plant chassis organism. Plant Cell Reports, 37: 1359-1366. https://doi.org/10.1007/s00299-018-2286-5. DOI: https://doi.org/10.1007/s00299-018-2286-5

Jain, Aditi, Ranjan Shivendu, Dasgupta Nandita y Chidambaram and Ramalingam. 2018. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Critical Reviews in Food Science and Nutrition, 58(2): 297-317. https://doi.org/10.1080/10408398.2016.1160363. DOI: https://doi.org/10.1080/10408398.2016.1160363

Jamkhande, Prasad Govindrao, Namrata W. Ghule, Abdul Haque Bamer y Mohan G. Kalaskar. 2019. Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53: 101174. https://doi.org/https://doi.org/10.1016/j.jddst.2019.101174. DOI: https://doi.org/10.1016/j.jddst.2019.101174

Jin, Yujian, Xiaoji Fan, Xingxing Li, Zhenyan Zhang, Liwei Sun, Z. Fu, M. Lavoie, Xiangliang Pan y H. Qian. 2017. Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum. Environmental pollution, 228: 517-527. https://doi.org/10.1016/j.envpol.2017.04.073. DOI: https://doi.org/10.1016/j.envpol.2017.04.073

Jośko, Izabela, Patryk Oleszczuk, Joanna Dobrzyńska, Barbara Futa, Jolanta Joniec y Ryszard Dobrowolski. 2019. Long-term effect of ZnO and CuO nanoparticles on soil microbial community in different types of soil. Geoderma, 352: 204-212. https://doi.org/10.1016/J.GEODERMA.2019.06.010. DOI: https://doi.org/10.1016/j.geoderma.2019.06.010

Judy, Jonathan D., Jason M. Unrine, William Rao y Paul M. Bertsch. 2012. Bioaccumulation of gold nanomaterials by manduca sextathrough dietary uptake of surface contaminated plant tissue. Environmental Science & Technology, 46(22): 12672-12678. https://doi.org/10.1021/es303333w. DOI: https://doi.org/10.1021/es303333w

Kang, Minghui, Haolin Wu, Wenyu Liu, Mingjia Zhu, Yu Han, Wei Liu, Chun‐Lin Chen, Kangqun Yin, Yusen Zhao, Zheng Yan, Huanhuan Liu, Shangling Lou, Y. Zan y Jianquan Liu. 2022. The pan-genome and local adaptation of Arabidopsis thaliana. Nature Communications, 14. https://doi.org/10.1101/2022.12.18.520013. DOI: https://doi.org/10.1101/2022.12.18.520013

Kaveh, Rashid, Yue Sheng Li, Sibia Ranjbar, Rouzbeh Tehrani, Christopher L. Brueck y Benoit Van Aken. 2013. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science and Technology, 47(18): 10637-10644. https://pubs.acs.org/doi/abs/10.1021/es402209w. DOI: https://doi.org/10.1021/es402209w

Ke, Mingjing, Qian Qu, W. J. G. M. Peijnenburg, Xingxing Li, Meng Zhang, Zhenyan Zhang, Tao Lu, Xiangliang Pan y Haifeng Qian. 2018a. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Science of The Total Environment, 644: 1070-1079. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.07.061.

Ke, Mingjing, Qian Qu, W. Peijnenburg, Xingxing Li, Meng Zhang, Zhenyan Zhang, Tao Lu, Xiangliang Pan y H. Qian. 2018b. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. The Science of The Total Environment, 644: 1070-1079. https://doi.org/10.1016/j.scitotenv.2018.07.061. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.061

Khan, Shams Tabrez, Syed Farooq Adil, Mohammed Rafi Shaik, Hamad Z. Alkhathlan, Merajuddin Khan y Mujeeb Khan. 2021. Engineered nanomaterials in soil: their impact on soil microbiome and plant health. Plants, 11(1): 109. https://doi.org/10.3390/PLANTS11010109. DOI: https://doi.org/10.3390/plants11010109

Kibbey, Tohren C. G. y Keith A. Strevett. 2019. The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings. Chemosphere, 221: 703-707. https://doi.org/10.1016/J.CHEMOSPHERE.2019.01.091. DOI: https://doi.org/10.1016/j.chemosphere.2019.01.091

Kim, Sun-Jung y Bong Hyun Chung. 2016. Antioxidant activity of levan coated cerium oxide nanoparticles. Carbohydrate Polymers, 150: 400-407. https://doi.org/https://doi.org/10.1016/j.carbpol.2016.05.021. DOI: https://doi.org/10.1016/j.carbpol.2016.05.021

Klepikova, A., A. Kasianov, E. Gerasimov, M. Logacheva y A. Penin. 2016. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. The Plant Journal : for cell and molecular biology, 88 6: 1058-1070. https://doi.org/10.1111/tpj.13312. DOI: https://doi.org/10.1111/tpj.13312

Koch, M. 2018. The plant model system Arabidopsis set in an evolutionary, systematic y spatio-temporal context. Journal of Experimental Botany, 70(1): 55-67. https://doi.org/10.1093/jxb/ery340. DOI: https://doi.org/10.1093/jxb/ery340

Kumar, Vineet, P. Guleria, Vinay Kumar y S. Yadav. 2013. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. The Science of The Total Environment, 461-462: 462-468. https://doi.org/10.1016/j.scitotenv.2013.05.018. DOI: https://doi.org/10.1016/j.scitotenv.2013.05.018

Landa, Premysl, P. Dytrych, Sylva Přerostová, Š Petrová, Radormira Vaňková y T. Vanek. 2017. Transcriptomic response of Arabidopsis thaliana exposed to CuO nanoparticles, bulk material, and ionic copper. Environmental Science & Technology, 51 18: 10814-10824. https://doi.org/10.1021/acs.est.7b02265. DOI: https://doi.org/10.1021/acs.est.7b02265

Landa, Premysl, Radomira Vankova, Jana Andrlova, Jan Hodek, Petr Marsik, Helena Storchova, Jason C. White y Tomas Vanek. 2012. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO₂ , and fullerene soot. Journal of Hazardous Materials, 241-242: 55-62. https://doi.org/10.1016/J.JHAZMAT.2012.08.059. DOI: https://doi.org/10.1016/j.jhazmat.2012.08.059

Lee, Chang Woo, Shaily Mahendra, Katherine Zodrow, Dong Li, Yu Chang Tsai, Janet Braam y Pedro J. J. Álvarez. 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry, 29(3): 669-675. https://doi.org/10.1002/ETC.58. DOI: https://doi.org/10.1002/etc.58

Li, Xingxing, Mingjing Ke, Meng Zhang, W. Peijnenburg, Xiaoji Fan, Jiahui Xu, Zhenyan Zhang, Tao Lu, Z. Fu y H. Qian. 2018a. The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: growth, photosynthesis and antioxidant system. Environmental Pollution, 232: 212-219. https://doi.org/10.1016/j.envpol.2017.09.034.

Li, Xingxing, Mingjing Ke, Meng Zhang, W. J. G. M. Peijnenburg, Xiaoji Fan, Jiahui Xu, Zhenyan Zhang, Tao Lu, Zhengwei Fu y Haifeng Qian. 2018b. The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: growth, photosynthesis and antioxidant system. Environmental Pollution, 232: 212-219. https://doi.org/10.1016/J.ENVPOL.2017.09.034. DOI: https://doi.org/10.1016/j.envpol.2017.09.034

Liu, Jia, Philip C. Williams, Jane Geisler-Lee, Boyd M. Goodson, Masoud Fakharifar, Meisam Peiravi, Da Chen, David A. Lightfoot y Max E. Gemeinhardt. 2018. Impact of wastewater effluent containing aged nanoparticles and other components on biological activities of the soil microbiome, Arabidopsis plants and earthworms. Environmental Research, 164: 197-203. https://doi.org/10.1016/J.ENVRES.2018.02.006. DOI: https://doi.org/10.1016/j.envres.2018.02.006

Liu, Jia, Philip C. Williams, Boyd M. Goodson, Jane Geisler-Lee, Masoud Fakharifar y Max E. Gemeinhardt. 2019. TiO₂ nanoparticles in irrigation water mitigate impacts of aged Ag nanoparticles on soil microorganisms, Arabidopsis thaliana plants, and Eisenia fetida earthworms. Environmental Research, 172: 202-215. https://doi.org/10.1016/J.ENVRES.2019.02.010. DOI: https://doi.org/10.1016/j.envres.2019.02.010

Ma, Chuanxin, Sudesh Chhikara, Baoshan Xing, Craig Musante, Jason C. White y Om Parkash Dhankher. 2013. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustainable Chemistry & Engineering, 1(7): 768-778. https://doi.org/10.1021/sc400098h. DOI: https://doi.org/10.1021/sc400098h

Macůrková, A., L. Maryška, B. Jindřichová, T. Drobníková, B. Vrchotová, R. Pospíchalová, K. Záruba, T. Hubáček, J. Siegel, L. Burketová, P. Lovecká y O. Valentová. 2021. Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and “soil-plant” systems. Applied Soil Ecology, 168: 104165. https://doi.org/10.1016/J.APSOIL.2021.104165. DOI: https://doi.org/10.1016/j.apsoil.2021.104165

Maity, D., U. Gupta y S. Saha. 2022. Biosynthesized metal oxide nanoparticles for sustainable agriculture: next-generation nanotechnology for crop production, protection and management. Nanoscale. https://doi.org/10.1039/d2nr03944c. DOI: https://doi.org/10.1039/D2NR03944C

Mathew, Mabel Maria y Kalika Prasad. 2021. Model systems for regeneration: Arabidopsis. Development 148. https://doi.org/10.1242/dev.195347. DOI: https://doi.org/10.1242/dev.195347

Milewska-Hendel, Anna, Maciej Zubko, Danuta Stróż y Ewa U. Kurczyńska. 2019. Effect of nanoparticles surface charge on the Arabidopsis thaliana (L.) roots development and their movement into the root cells and protoplasts. International Journal of Molecular Sciences, 20(7). https://doi.org/10.3390/ijms20071650. DOI: https://doi.org/10.3390/ijms20071650

Mu, Dan, Yinghui Liang, Wenhui Zhang y Yucheng Wang. 2018. Investigation on tree molecular genome of Arabidopsis thaliana for Internet of Things. IEEE Access, 6: 67688-67698. https://doi.org/10.1109/ACCESS.2018.2877411. DOI: https://doi.org/10.1109/ACCESS.2018.2877411

Nair, Prakash M. Gopalakrishnan y Ill Min Chung. 2017. Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings in response to ZnO nanoparticles and Zn ion exposure. Science of The Total Environment, 575: 187-198. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.10.017. DOI: https://doi.org/10.1016/j.scitotenv.2016.10.017

Parashar, Srishti, Sheetal Raj, Priyanka Srivastava y Abhishek Kumar Singh. 2024. Comparative toxicity assessment of selected nanoparticles using different experimental model organisms. Journal of Pharmacological and Toxicological Methods, 130: 107563. https://doi.org/https://doi.org/10.1016/j.vascn.2024.107563. DOI: https://doi.org/10.1016/j.vascn.2024.107563

Peyrot, Caroline, Kevin J. Wilkinson, Mélanie Desrosiers y Sébastien Sauvé. 2013. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environmental Toxicology and Chemistry, 33(1): 115-125. https://doi.org/10.1002/etc.2398. https://doi.org/10.1002/etc.2398. DOI: https://doi.org/10.1002/etc.2398

Qian, Haifeng, Xiaofeng Peng, Xiao Han, Jie Ren, Liwei Sun y Zhengwei Fu. 2013. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Sci- ences, 25(9): 1947-1956. https://doi.org/10.1016/S1001-0742(12)60301-5. DOI: https://doi.org/10.1016/S1001-0742(12)60301-5

Racca, Luisa, Marta Canta, Bianca Dumontel, Andrea Ancona, Tania Limongi, Nadia Garino, Marc, Laurenti, Giancarlo Canavese y Valentina Cauda. 2018. 12-Zinc oxide nanostructures in biomedicine. En Smart Nanoparticles for Biomedicine, edited by Gianni Ciofani, Elsevier, 171-187. DOI: https://doi.org/10.1016/B978-0-12-814156-4.00012-4

Rajput, Vishnu D., Tatiana Minkina, Morteza Feizi, Arpna Kumari, Masudulla Khan, Saglara Mandzhieva, Svetlana Sushkova, Hassan El‐ramady, Krishan K. Verma, Abhishek Singh, Eric D. van Hullebusch, Rupesh Kumar Singh, Hanuman Singh Jatav y Ravish Choudhary. 2021. Effects of silicon and silicon-based nanoparticles on rhizosphere microbiome, plant stress and growth. Biology, 10(8): 791. https://www.mdpi.com/2079-7737/10/8/791/htm. DOI: https://doi.org/10.3390/biology10080791

Rippner, Devin A., Peter G. Green, Thomas M. Young y Sanjai J. Parikh. 2018. Dissolved organic matter reduces CuO nanoparticle toxicity to duckweed in simulated natural systems. Environmental Pollution, 234: 692-698. https://doi.org/https://doi.org/10.1016/j.envpol.2017.12.014. DOI: https://doi.org/10.1016/j.envpol.2017.12.014

Rohela, Gulab Khan, Pawan Saini, Danishta Aziz, Summira Rafiq, Phanikanth Jogam y Baohong Zhang. 2024. Nanoparticles as elicitors and stimulators for plant tissue culture, transgenics, and genome editing: a comprehensive review. Industrial Crops and Products, 222: 120097. https://doi.org/https://doi.org/10.1016/j.indcrop.2024.120097. DOI: https://doi.org/10.1016/j.indcrop.2024.120097

Ruales-Lonfat, C., J. F. Barona, A. Sienkiewicz, M. Bensimon, J. Vélez-Colmenares, N. Benítez y C. Pulgarín. 2015. Iron oxides semiconductors are efficients for solar water disinfection: a comparison with photo-Fenton processes at neutral pH. Applied Catalysis B: Environmental, 166-167: 497-508. https://doi.org/https://doi.org/10.1016/j.apcatb.2014.12.007. DOI: https://doi.org/10.1016/j.apcatb.2014.12.007

Ryu, Chung-Hyeon, Sung-Jun Joo y Hak-Sung Kim. 2016. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping. Applied Surface Science, 384: 182-191. https://doi.org/https://doi.org/10.1016/j.apsusc.2016.05.025. DOI: https://doi.org/10.1016/j.apsusc.2016.05.025

Saleem, Haleema y Syed Javaid Zaidi. 2020. Recent developments in the application of nanomaterials in agroecosystems. Nanomaterials, 10(12): 2411. https://www.mdpi.com/2079-4991/10/12/2411. DOI: https://doi.org/10.3390/nano10122411

Santás-Miguel, V., M. Arias-Estévez, Andrés Rodríguez-Seijo y D. Arenas-Lago. 2023. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environmental pollution: 122222. https://doi.org/10.1016/j.envpol.2023.122222. DOI: https://doi.org/10.1016/j.envpol.2023.122222

Shull, Timothy E., Jasmina Kurepa y Jan A. Smalle. 2019. Anatase TiO₂ nanoparticles induce autophagy and chloroplast degradation in thale cress (Arabidopsis thaliana). Environmental Science and Technology, 53(16): 9522-9532. https://pubs.acs.org/doi/abs/10.1021/acs.est.9b01648. DOI: https://doi.org/10.1021/acs.est.9b01648

Siegel, Jakub, Kamil Záruba, Václav Švorčík, Kristýna Kroumanová, Lenka Burketová y Jan Martinec. 2018. Round-shape gold nanoparticles: effect of particle size and concentration on Arabidopsis thaliana root growth. Nanoscale Research Letters, 13(1): 95. https://doi.org/10.1186/s11671-018-2510-9. DOI: https://doi.org/10.1186/s11671-018-2510-9

Singh, Pooja, Vanya Nayak, Ranjana Verma, Arunadevi Natarajan, Jay Singh, Shyam Pandey y Kshitji R. B. Singh. 2024. Comprehensive perspective of sustainable nanostructured metal and metal oxide towards agriculture utility for precision farming. Biocatalysis and Agricultural Biotechnology. https://doi.org/10.1016/j.bcab.2024.103457. DOI: https://doi.org/10.1016/j.bcab.2024.103457

Somssich, Marc. 2022. The dawn of plant molecular biology: how three key methodologies paved the way. Current Protocols, 2. https://doi.org/10.1002/cpz1.417. DOI: https://doi.org/10.1002/cpz1.417

Sosan, Arifa, D. Svistunenko, Darya Straltsova, Katsiaryna Tsiurkina, I. Smolich, T. Lawson, S. Subramaniam, V. Golovko, David Anderson, A. Sokolik, Ian Colbeck y V. Demidchik. 2016a. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. The Plant Journal : for cell and molecular biology, 85(2): 245-257. https://doi.org/10.1111/tpj.13105.

Sosan, Arifa, Dimitri Svistunenko, Darya Straltsova, Katsiaryna Tsiurkina, Igor Smolich, Tracy Lawson, Sunitha Subramaniam, Vladimir Golovko, David Anderson, Anatoliy Sokolik, Ian Colbeck y Vadim Demidchik. 2016b. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. The Plant Journal, 85(2): 245-257. https://doi.org/10.1111/TPJ.13105. DOI: https://doi.org/10.1111/tpj.13105

Syed, Baker, Nagendra M. N. Prasad y Sreedharamurthy Satish. 2016. Endogenic mediated synthesis of gold nanoparticles bearing bactericidal activity. Journal of Microscopy and Ultrastructure, 4(3): 162-166. https://doi.org/https://doi.org/10.1016/j.jmau.2016.01.004. DOI: https://doi.org/10.1016/j.jmau.2016.01.004

Syu, You-yu, Jui-Hung Hung, Jui-Chang Chen y Huey-wen Chuang. 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 83: 57-64. https://doi.org/https://doi.org/10.1016/j.plaphy.2014.07.010. DOI: https://doi.org/10.1016/j.plaphy.2014.07.010

Szymańska, Renata, Karolina Kołodziej, Ireneusz Ślesak, Paulina Zimak-Piekarczyk, Aleksandra Orzechowska, Michał Gabruk, Andrzej Zadło, Iwona Habina, Wiesław Knap, Květoslava Burda y Jerzy Kruk. 2016. Titanium dioxide nanoparticles (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana. Environmental Pollution, 213: 957-965. https://doi.org/10.1016/J.ENVPOL.2016.03.026. DOI: https://doi.org/10.1016/j.envpol.2016.03.026

Tang, Yulin, Rong He, Jian Zhao, Guangli Nie, Lina Xu y Baoshan Xing. 2016. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environmental Pollution, 212: 605-614. https://doi.org/10.1016/J.ENVPOL.2016.03.019. DOI: https://doi.org/10.1016/j.envpol.2016.03.019

Tian, Liyan, Jupei Shen, Guoxin Sun, Bin Wang, Rong Ji y Lijuan Zhao. 2020. Foliar application of SiO₂ nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L.) rhizosphere grown in contaminated mine soil. Environmental Science and Technology, 54(20): 13137-13146. https://pubs.acs.org/doi/abs/10.1021/acs.est.0c03767. DOI: https://doi.org/10.1021/acs.est.0c03767

Tumburu, L., C. P. Andersen, P. T. Rygiewicz y J. R. Reichman. 2017. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis. Environ. Toxicol. Chem., 36(1): 71-82. https://doi.org/10.1002/etc.3500. DOI: https://doi.org/10.1002/etc.3500

Ulhassan, Zaid, I. Khan, M. Hussain, Ali Raza Khan, Y. Hamid, S. Hussain, S. Allakhverdiev y Weijun Zhou. 2022. Efficacy of metallic nanoparticles in attenuating the accumulation and toxicity of chromium in plants: current knowledge and future perspectives. Environmental pollution: 120390. https://doi.org/10.1016/j.envpol.2022.120390. DOI: https://doi.org/10.1016/j.envpol.2022.120390

Vaňková, R., P. Landa, R. Podlipná, P. Dobrev, Sylva Přerostová, L. Langhansová, A. Gaudinova, K. Moťková, Vojtech Knirsch y T. Vanek. 2017. ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. The Science of The Total Environment 593-594: 535-542. https://doi.org/10.1016/j.scitotenv.2017.03.160.

Vankova, Radomira, Premysl Landa, Radka Podlipna, Petre I. Dobrev, Sylva Prerostova, Lenka Langhansova, Alena Gaudinova, Katerina Motkova, Vojtech Knirsch y Tomas Vanek. 2017. ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Science of The Total Environment, 593-594: 535-542. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.03.160. DOI: https://doi.org/10.1016/j.scitotenv.2017.03.160

Wang, Zhenyu, Lina Xu, Jian Zhao, Xiangke Wang, J. White y B. Xing. 2016. CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environmental science & technology, 50(11): 6008-6016. https://doi.org/10.1021/acs.est.6b01017. DOI: https://doi.org/10.1021/acs.est.6b01017

Wu, Honghong, Nicholas Tito y Juan P. Giraldo. 2017. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano, 11(11): 11283-11297. https://pubs.acs.org/doi/abs/10.1021/acsnano.7b05723. DOI: https://doi.org/10.1021/acsnano.7b05723

Xie, Changjian, Zhiling Guo, Peng Zhang, Jie Yang, Junzhe Zhang, Yuhui Ma, Xiao He, Iseult Lynch y Zhiyong Zhang. 2022. Effect of CeO₂ nanoparticles on plant growth and soil microcosm in a soil-plant interactive system. Environmental Pollution, 300: 118938-118938. https://doi.org/10.1016/J.ENVPOL.2022.118938. DOI: https://doi.org/10.1016/j.envpol.2022.118938

Xu, Nuohan, Jian Kang, Yangqing Ye, Qi Zhang, Mingjing Ke, Yufei Wang, Zhenyan Zhang, Tao Lu, W. J. G. M. Peijnenburg, Penuelas Josep, Guanjun Bao y Haifeng Qian. 2022. Machine learning predicts ecological risks of nanoparticles to soil microbial communities. Environmental Pollution, 307: 119528-119528. https://doi.org/10.1016/J.ENVPOL.2022.119528. DOI: https://doi.org/10.1016/j.envpol.2022.119528

Yang, S., R. Yin, C. Wang, Y. Yang y J. Wang. 2023. Phytotoxicity of zinc oxide nanoparticles and multi-walled carbon nanotubes, alone or in combination, on Arabidopsis thaliana and their mutual effects on oxidative homeostasis. PLoS One, 18(2): e0281756. https://doi.org/10.1371/journal.pone.0281756. DOI: https://doi.org/10.1371/journal.pone.0281756

Yaschenko, Anna, Jose Alonso y A. Stepanova. 2024. Arabidopsis as a model for translational research. The Plant Cell. https://doi.org/10.1093/plcell/koae065. DOI: https://doi.org/10.1093/plcell/koae065

Yoon, Hakwon, Yu-Gyeong Kang, Yoon-Seok Chang y Jae-Hwan Kim. 2019. Effects of Zerovalent iron nanoparticles on photosynthesis and biochemical adaptation of soil-grown Arabidopsis thaliana. Nanomaterials, 9(11). https://doi.org/10.3390/nano9111543. DOI: https://doi.org/10.3390/nano9111543

Zango, Zakariyya Uba, Abdurrahman Garba, Fatimah Bukola Shittu, Saifullahi Shehu Imam, Abdurrashid Haruna, Muttaqa Uba Zango, Ismael A. Wadi, Usman Bello, Haruna Adamu, Basem E. Keshta, Dmitry Olegovich Bokov, Omirserik Baigenzhenov y Ahmad Hosseini-Bandegharaei. 2025. A state-of-the-art review on green synthesis and modifications of ZnO nanoparticles for organic pollutants decomposition and CO₂ conversion. Journal of Hazardous Materials Advances, 17: 100588. https://doi.org/https://doi.org/10.1016/j.hazadv.2024.100588. DOI: https://doi.org/10.1016/j.hazadv.2024.100588