Nanopartículas de óxido de cobre biogénicas de Trichoderma harzianum: un nuevo enfoque para el manejo del brusone del trigo

Contenido principal del artículo

Micaela Belen Gallo
https://orcid.org/0009-0003-3625-4598
Andres Torres Nicolini
https://orcid.org/0009-0007-3744-1298
Sergio Ivan Martinez
https://orcid.org/0000-0002-1671-5743
Analia Edith Perello
https://orcid.org/0000-0001-5889-6071
Vera Alejandra Alvarez
https://orcid.org/0000-0002-4909-4592
Veronica Consolo
https://orcid.org/0000-0002-0619-7153

Resumen

El brusone del trigo, causado por el hongo Pyricularia oryzae patotipo Triticum (PoT), es una enfermedad devastadora en América del Sur, Asia y África debido a la limitada efectividad de los fungicidas y la falta de variedades resistentes. En Argentina, el patógeno ha sido detectado desde 2012, aunque no se han registrado brotes hasta la fecha, representa un riesgo inminente dada su presencia en países limítrofes. Por lo tanto, se deben considerar nuevas estrategias para controlar la enfermedad y una vigilancia adecuada. La nanotecnología puede contribuir protegiendo cultivos agrícolas, al ofrecer diferentes mecanismos de acción contra los patógenos. Así, las nanopartículas de óxidos metálicos obtenidas por métodos fisicoquímicos o biogénicos pueden actuar como antimicrobianas. Este estudio involucró la biosíntesis de nanopartículas de óxido de cobre (CuONPs) biosintetizadas a partir del hongo Trichoderma harzianum y la evaluación de su capacidad para reducir el crecimiento del micelio fúngico y los síntomas de la enfermedad del brusone de trigo en plantas bajo condiciones controladas. La caracterización fisicoquímica de las CuONPs realizada por TEM y EDS mostró fibras alargadas en forma y un tamaño promedio de 397 ± 55 nm de largo y 124 ± 13 nm de ancho, con una buena estabilidad fisicoquímica. Los experimentos in vitro e in vivo para evaluar el potencial de las CuONPs contra PoT demostraron ser efectivas en inhibir fuertemente el crecimiento micelial de las cepas nativas de PoT PY15, PY22 y PY34 en un 74%, 72% y 67%, respectivamente, a una concentración de 1000 ppm. Además, las CuONPs a una concentración de 500 ppm aplicadas en aspersión foliar sobre plantas de trigo inoculadas con PY34 causaron una reducción del 95% en la severidad de la enfermedad. Además, las plantas de trigo cuyas semillas fueron previamente pelletizadas con 500 ppm de CuONPs mostraron una reducción del 90% en los síntomas de la enfermedad. Estos hallazgos confirman que las CuONPs biosintetizadas poseen una actividad antifúngica, que podría utilizarse para optimizar la protección del bruzone del trigo causado por PoT.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Gallo, M. B., Torres Nicolini, A., Martinez, S. I., Perello, A. E., Alvarez, V. A., & Consolo, V. (2025). Nanopartículas de óxido de cobre biogénicas de Trichoderma harzianum: un nuevo enfoque para el manejo del brusone del trigo. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 19(37), e69864. https://doi.org/10.22201/ceiich.24485691e.2026.37.69864
Sección
Artículos de investigación

Citas

Alhaithloul, H. A. S., Ali, B., Alghanem, S. M. S., Zulfiqar, F., Al-Robai, S. A., Ercisli, S., Yong J. W. H., Moosa A., Irfan E., Ali Q., Irshad M. A. and Abeed, A. H. (2023). Effect of green-synthesized copper oxide nanoparticles on growth, physiology, nutrient uptake, and cadmium accumulation in Triticum aestivum (L.). Ecotoxicology and Environmental Safety, 268, 115701. https://doi.org/10.1016/j.ecoenv.2023.115701. DOI: https://doi.org/10.1016/j.ecoenv.2023.115701

Ali, S., Ahmad, N., Dar, M. A., Manan, S., Rani, A., Alghanem, S. M. S., Khan, A. K., Sethupathy, S., Elboughdiri, N., Mostafa, Y., Alambri, S. A., Hashem, M., Shahid, M. and Zhu, D. (2023). Nano-agrochemicals as substitutes for pesticides: prospects and risks. Plants, 13(1): 109. https://doi.org/10.3390/plants13010109. DOI: https://doi.org/10.3390/plants13010109

Al-Otivi, F., Alfuzan, S. A., Alharbi, R. I., Al-Askar, A. A., Al-Otaibi, R. M., Al Subaie, H. F. and Moubayed, N. M. (2022). Comparative study of antifungal activity of two prepa- rations of green silver nanoparticles from Portulaca oleracea extract. Saudi Journal of Biological Sciences, 29: 2772-2781. https://doi.org/10.1016/j.sjbs.2021.12.056. DOI: https://doi.org/10.1016/j.sjbs.2021.12.056

Ameh, T. and Sayes, C. M. (2019). The potential exposure and hazards of copper nanoparticles: a review. Environmental Toxicology and Pharmacology, 71: 103220. https://doi.org/10.1016/j.etap.2019.103220. DOI: https://doi.org/10.1016/j.etap.2019.103220

Brenelli, L. B., Persinoti, G. F., Cairo, J. P. L. F., Liberato, M. V., Gonçalves, T. A., Otero, I. V. R., Mainardi, P. H., Felby, C., Sette L. D. and Squina, F. M. (2019). Novel redox-active enzymes for ligninolytic applications revealed from multiomics analyses of Peniophora sp. CBMAI 1063, a laccase hyper-producer strain. Scientific Reports, 9: 17564. https://doi.org/10.1038/s41598-019-53608-1. DOI: https://doi.org/10.1038/s41598-019-53608-1

Cabrera, M. G. and Gutiérrez, S. (2007). Primer registro de Pyricularia grisea en cultivos de trigo del NE de Argentina. Jornada de Actualización en Enfermedades de Trigo, 60. Llavallol, IFSC Press.

Castroagudín, V. L., Moreira, S. I., Pereira, D. A. S., Moreira, S. S., Brunner, P. C., Maciel, J. L. N., Crous, P. W., McDonald, B. A., Alves, E. and Ceresini, P. C. (2016). Pyricularia graminis-tritici, a new Pyricularia species causing wheat blast. Persoonia — Molecular Phylogeny and Evolution of Fungi, 37: 199-216. https://doi.org/10.3767/003158516X692149. DOI: https://doi.org/10.3767/003158516X692149

Ceresini, P. C., Castroagudín, V. L., Rodrigues, F. Á., Rios, J. A., Aucique-Pérez, C. E., Moreira, S. I., Croll, D., Alves, E., De Carvalho, G., Maciel, J. L. N. and McDonald, B. A. (2019). Wheat blast: from its origins in South America to its emergence as a global threat. Molecular Plant Pathology, 20: 155-172. https://doi.org/10.1111/mpp.12747. DOI: https://doi.org/10.1111/mpp.12747

Chakraborty, N., Banerjee, J., Chakraborty, P., Banerjee, A., Chanda, S., Ray, K., Acharya, K. and Sarkar, J. (2022). Green synthesis of copper/copper oxide nanoparticles and their applications: a review. Green Chemistry Letters and Reviews, 15(1): 187-215. https://doi.org/10.1080/17518253.2022.2025916. DOI: https://doi.org/10.1080/17518253.2022.2025916

Chen, H. (2018). Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. Chemical Speciation & Bioavailability, 30(1): 123-134. https://doi.org/10.1080/09542299.2018.1520050. DOI: https://doi.org/10.1080/09542299.2018.1520050

Chen, Y., Liu, Z., Meng, S., Shen, Z., Shi, H., Qiu, J., Lin, F., Zhang, S. and Kou, Y. (2022). OsCERK1 contributes to cupric oxide nanoparticles induced phytotoxicity and basal resistance against blast by regulating the anti-oxidant system in rice. Journal of Fungi, 9: 36. https://doi.org/10.3390/jof9010036. DOI: https://doi.org/10.3390/jof9010036

Consolo, V. F., Torres-Nicolini, A. and Álvarez, V. A. (2020). Mycosinthetized Ag, CuO and ZnO nanoparticles from a promising Trichoderma harzianum strain and their antifungal potential against important phytopathogens. Scientific Reports, 10(1): 20499. https://doi.org/10.1038/s41598-020-77294-6. DOI: https://doi.org/10.1038/s41598-020-77294-6

Gaba, S., Varma, A., Prasad, R. and Goel, A. (2022). Exploring the impact of bioformulated copper oxide nanoparticles on cytomorphology of Alternaria brassicicola. Current Microbiology, 79(8): 244. https://doi.org/10.1007/s00284-022-02927-0. DOI: https://doi.org/10.1007/s00284-022-02927-0

Gaber, S. E., Hashem, A. H., El-Sayyad, G. S. and Attia, M. S. (2023). Antifungal activity of myco-synthesized bimetallic ZnO-CuO nanoparticles against fungal plant pathogen Fusarium oxysporum. Biomass Conversion and Biorefinery, 14: 25395-25409. https://doi.org/10.1007/s13399-023-04550-w. DOI: https://doi.org/10.1007/s13399-023-04550-w

González Merino, A. M., Hernández Juárez, A., Betancourt Galindo, R., Ochoa Fuentes, Y. M., Valdez Aguilar, L. A. and Limón Corona, M. L. (2021). Antifungal activity of zinc oxide nanoparticles in Fusarium oxysporum-Solanum lycopersicum pathosystem under controlled conditions. Journal of Phytopathology, 169(9): 533-544. https://doi.org/10.1111/jph.13023. DOI: https://doi.org/10.1111/jph.13023

Guilger, M., Pasquoto-Stigliani, T., Bilesky-Jose, N., Grillo, R., Abhilash, P. C., Fraceto, L. F. and de Lima, R. (2017). Biogenic silver nanoparticles based on Trichoderma harzianum: Synthesis, characterization, toxicity evaluation and biological activity. Scientific Reports, 7(1): 1. https://doi.org/10.1038/srep44421. DOI: https://doi.org/10.1038/srep44421

Hasanin, M., Al Abboud, M. A., Alawlaqi, M. M., Abdelghany, T. M. and Hashem, A. H. (2022). Ecofriendly synthesis of biosynthesized copper nanoparticles with starch-based nanocomposite: antimicrobial, antioxidant, and anticancer activities. Biological Trace Element Research, 200: 2099-2112. https://doi.org/10.1007/s12011-021-02812-0. DOI: https://doi.org/10.1007/s12011-021-02812-0

Hashem, A. H., Saied, E., Amin, B. H., Alotibi, F.O., Al-Askar, A. A., Arishi, A. A., Elkady, F. M. and Elbahnasawy, M. A. (2022). Antifungal activity of biosynthesized silver nanoparticles (AgNPs) against Aspergilli causing aspergillosis: ultrastructure study. Journal of Functional Biomaterials, 13: 242. https://doi.org/10.3390/jfb13040242. DOI: https://doi.org/10.3390/jfb13040242

Joshi, S. M., De Britto, S., Jogaiah, S. and Ito, S. (2019). Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules, 9: 9. https://doi.org/10.3390/biom9090419. DOI: https://doi.org/10.3390/biom9090419

Kalia, A., Kaur, J., Kaur, A. and Singh, N. (2020). Antimycotic activity of biogenically synthesised metal and metal oxide nanoparticles against plant pathogenic fungus Fusarium moniliforme (F. fujikuroi). Indian Journal of Experimental Biology, 58: 263-270. DOI: https://doi.org/10.56042/ijeb.v58i04.65460

Keller, A. A., Adeleye, A. S., Conway, J. R., Garner, K. L., Zhao, L., Cherr, G. N. and Zuverza-Mena, N. (2017). Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact, 7: 28-40. https://doi.org/10.1016/j.impact.2017.05.003. DOI: https://doi.org/10.1016/j.impact.2017.05.003

Khan, S., Zahoor, M., Khan, R. S., Ikram, M. and Islam, N. U. (2023). The impact of silver nanoparticles on the growth of plants: the agriculture applications. Heliyon, 9(6). https://doi.org/10.1080/17429145.2023.2243098. DOI: https://doi.org/10.1016/j.heliyon.2023.e16928

Malandrakis, A. A., Kavroulakis, N. and Chrysikopoulos, C. V. (2019). Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Science of the Total Environment, 670: 292-299. https://doi.org/10.1016/j.scitotenv.2019.03.210. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.210

Mantuano, M. O. M., Jiménez, K. X. B., Fiallo, S. F. A., Rosado, Á. R. H. and Robles, D. V. A. (2020). Biosíntesis de nanopartículas de hierro (Fe3O4) en la remediación de aguas contaminadas. Universidad Ciencia y Tecnología, 24: 35-45.

Martínez, S. I., Sanabria, A., Fleitas, M. C., Consolo, V. F. and Perelló, A. (2019). Wheat blast: aggressiveness of isolates of Pyricularia oryzae and effect on grain quality. Journal of King Saud University — Science, 31(2): 150-157. https://doi.org/10.1016/j.jksus.2018.05.003. DOI: https://doi.org/10.1016/j.jksus.2018.05.003

Martínez, S. I., Wegner, A., Bohnert, S., Schaffrath, U. and Perelló, A. (2021). Tracing seed to seedling transmission of the wheat blast pathogen Magnaporthe oryzae pathotype Triticum. Plant Pathology, 70: 1562 - 1571. https://doi.org/10.1111/ppa.13400. DOI: https://doi.org/10.1111/ppa.13400

Martínez, S. I. and Perelló, A. (2024) Cellular changes and PR-1 gene expression accompanying infection-related morphogenesis and cell progression during invasive growth Pyricularia oryzae pathotype Triticum in resistant and susceptible wheat cultivars. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2024.08.002. DOI: https://doi.org/10.1016/j.jssas.2024.08.002

Mohamed, A. A., Abu-Elghait, M., Ahmed, N. E. and Salem, S. S. (2021). Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biological Trace Element Research, 199: 2788-2799. https://doi.org/10.1007/s12011-020-02369-4. DOI: https://doi.org/10.1007/s12011-020-02369-4

Noman, M., Ahmed, T., Wang, J., Ijaz, M., Shahid, M., Islam, M. S., Irfan Manzoor, A., Li, D. and Song, F. (2023). Nano-enabled crop resilience against pathogens: potential, mechanisms and strategies. Crop Health, 1(1), 15. https://doi.org/10.1007/s44297-023-00015-8. DOI: https://doi.org/10.1007/s44297-023-00015-8

Pariona, N., I. Mtz-Enríquez, A., Sánchez-Rangel, D., Carrión, G., Paraguay-Delgado, F. and Rosas-Saito, G. (2019). Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. Royal Society of Chemistry Advances, 9: 18835-18843. https://doi.org/10.1039/c9ra03110c. DOI: https://doi.org/10.1039/C9RA03110C

Pscheidt, J. W. and Ocamb, C. M. (2022). Copper-based bactericides and fungicides. Pacific Northwest pest management handbooks. Corvallis: Oregon State University. https://pnwhandbooks.org/node/25411.

Qamar, S. U. R. and Ahmad, J. N. (2021). Nanoparticles: mechanism of biosynthesis using plant extracts, bacteria, fungi, and their applications. Journal of Molecular Liquids, 334: 116040. https://doi.org/10.1016/j.molliq.2021.116040. DOI: https://doi.org/10.1016/j.molliq.2021.116040

Sajid, M. and Płotka-Wasylka, J. (2020). Nanoparticles: synthesis, characteristics, and applications in analytical and other sciences. Microchemical Journal, 154: 104623. https://doi.org/10.1016/j.microc.2020.104623. DOI: https://doi.org/10.1016/j.microc.2020.104623

Sanguiñedo, P., Faccio, R., Abreo, E. and Alborés, S. (2023). Biogenic silver and copper nanoparticles: potential antifungal agents in rice and wheat crops. Chemistry, 5(4): 4. https://doi.org/10.3390/chemistry5040143. DOI: https://doi.org/10.3390/chemistry5040143

Saravanakumar, K., Shanmugam, S., Varukattu, N. B., MubarakAli, D., Kathiresan, K. and Wang, M.-H. (2019). Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. Journal of Photochemistry and Photobiology B: Biology, 190: 103-109. https://doi.org/10.1016/j.jphotobiol.2018.11.017. DOI: https://doi.org/10.1016/j.jphotobiol.2018.11.017

Sathiyabama, M. and Manikandan, A. (2018). Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger millet (Eleusine coracana Gaertn.) plants against blast disease. Journal of Agricultural and Food Chemistry, 66(8): 1784-1790. https://doi.org/10.1021/acs.jafc.7b05921. DOI: https://doi.org/10.1021/acs.jafc.7b05921

Sawake, M. M., Moharil, M. P., Ingle, Y. V., Jadhav, P. V., Ingle, A. P., Khelurkar, V. C., Paithankar, D. H., Bathe, G. A. and Gade, A. K. (2022). Management of Phytophthora parasitica causing gummosis in citrus using biogenic copper oxide nanoparticles. Journal of Applied Microbiology, 132(4): 3142-3154. https://doi.org/10.1111/jam.15472. DOI: https://doi.org/10.1111/jam.15472

Selmani, A., Kovačević, D. and Bohinc, K. (2022). Nanoparticles: from synthesis to applications and beyond. Advances in Colloid and Interface Science, 303, 102640. https://doi.org/10.1016/j.cis.2022.102640. DOI: https://doi.org/10.1016/j.cis.2022.102640

Slavin, Y. N. and Bach, H. (2022). Mechanisms of antifungal properties of metal nanoparticles. Nanomaterials, 12(24), 4470. https://doi.org/10.3390/nano12244470. DOI: https://doi.org/10.3390/nano12244470

Urashima, A. S., Galbieri, R. and Stabili, A. (2005). DNA fingerprinting and sexual characterization revealed two distinct populations of Magnaporthe grisea in wheat blast from Brazil. Czech Journal of Genetics and Plant Breeding, 41(special issue): 238-245. https://doi.org/10.17221/6184-CJGPB. DOI: https://doi.org/10.17221/6184-CJGPB

Vanti, G. L., Masaphy, S., Kurjogi, M., Chakrasali, S. and Nargund, V. B. (2020). Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. International Journal of Biological Macromolecules, 156: 1387-1395. https://doi.org/10.1016/j.ijbiomac.2019.11.179. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.179

Vera-Reyes, I., Esparza‐Arredondo, I. J. E., Lira‐Saldívar, R. H., Granados‐Echegoyen, C. A., Álvarez‐Román, R., Vásquez‐López, A. and Díaz‐Barriga Castro, E. (2019). In vitro antimicrobial effect of metallic nanoparticles on phytopathogenic strains of crop plants. Journal of Phytopathology, 167(7-8): 461-469. https://doi.org/10.1111/jph.12818. DOI: https://doi.org/10.1111/jph.12818

Wang, S., Asuke, S., Vy, T. T. P., Inoue, Y., Chuma, I., Win, J., Kato, K. and Tosa, Y. (2018). A new resistance gene in combination with Rmg8 confers strong resistance against Triticum isolates of Pyricularia oryzae in a common wheat landrace. Phytopathology, 108(11): 1299-1306. https://doi.org/10.1094/PHYTO-12-17-0400-R. DOI: https://doi.org/10.1094/PHYTO-12-17-0400-R

Zadoks, J. C., Chang, T. T. and Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14: 415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x. DOI: https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

Zaki, S. A., Ouf, S. A., Albarakaty, F. M., Habeb, M. M., Aly, A. A. and Abd-Elsalam, K. A. (2021). Trichoderma harzianum-mediated ZnO nanoparticles: a green tool for controlling soil-borne pathogens in cotton. Journal of Fungi, 7: 11. https://doi.org/10.3390/jof7110952. DOI: https://doi.org/10.3390/jof7110952

Zhang, H., Chen, S., Jia, X., Huang, Y., Ji, R. and Zhao, L. (2021). Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Science of the Total Environment, 752, 142264. https://doi.org/10.1016/j.scitotenv.2020.142264. DOI: https://doi.org/10.1016/j.scitotenv.2020.142264

Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., Xing, B., Wang, Z. and Ji, R. (2020). Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry, 68: 1935-1947. https://doi.org/10.1021/acs.jafc.9b06615. DOI: https://doi.org/10.1021/acs.jafc.9b06615