Influencia del grado de desacetilación del quitosano en la síntesis de nanopartículas para aplicaciones farmacéuticas
Contenido principal del artículo
Resumen
El quitosano es un biopolímero versátil con aplicaciones en nanotecnología, de amplio interés en la síntesis de nanopartículas para administración de fármacos. Su grado de desacetilación (DD, por sus siglas en inglés) es un parámetro clave que influye en las propiedades de las nanopartículas tales como carga superficial, tamaño, y estabilidad coloidal. Sin embargo, su impacto en la funcionalidad de las nanopartículas aún requiere de un análisis detallado. El objetivo de este estudio fue explorar la relación entre el DD del quitosano y sus propiedades fisicoquímicas en la síntesis de nanopartículas, así como sus implicaciones en aplicaciones farmacéuticas. Para ello se realizó una revisión de la literatura en las bases de datos PubMed, Google Scholar y ScienceDirect, utilizando las palabras clave chitosan, deacetylation y nanoparticles, tanto en inglés como en español. Estas palabras clave se identificaron en los títulos y resúmenes de artículos de investigación. Se incluyeron estudios publicados entre el año 2000 y el 2025, abordando la síntesis, modificación o caracterización de nanopartículas de quitosano. Se excluyeron estudios sin reportar explícitamente el DD y su relación con propiedades funcionales o aplicaciones biomédicas, así como publicaciones duplicadas. Los resultados evidencian que un DD medio (70-85%) promueve una adecuada interacción con membranas celulares, común en aplicaciones farmacéuticas. Un DD bajo (< 70%) implica una menor interacción con membranas biológicas, por lo que tienen limitada utilidad en sistemas de liberación. Aunque un DD alto (86-95%) podría promover mayor adhesión a superficies celulares y mayor eficiencia de encapsulación, también pueden promover alta reactividad y posible citotoxicidad por su densidad de grupos amino libres. No obstante, un DD muy alto (> 95%) podría causar toxicidad, además de reducir la viscosidad, afectando la estabilidad de las formulaciones. Estos hallazgos subrayan la necesidad de ajustar el DD según la aplicación específica, optimizando la funcionalidad de las nanopartículas de quitosano. En conclusión, el control preciso del DD es esencial para maximizar el potencial del quitosano para la preparación de nanopartículas destinadas a la administración de fármacos. Además, futuros estudios deben enfocarse en la estandarización de métodos de producción de quitosano con grados de desacetilación específicos, y en su aplicación en nuevas terapias nanotecnológicas.
Descargas
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Abourehab, M. A. S., Pramanik, S., Abdelgawad, M. A., Abualsoud, B. M., Kadi, A., Ansari, M. J. y Deepak, A. (2022). Recent advances of chitosan formulations in biomedical applications. International Journal of Molecular Sciences, 23(18): 10975. https://doi.org/10.3390/IJMS231810975. DOI: https://doi.org/10.3390/ijms231810975
Adhikari, C. (2021). Polymer nanoparticles-preparations, applications and future insights: a concise review. Polymer-Plastics Technology and Materials, 60(18): 1996-2024. https://doi.org/10.1080/25740881.2021.1939715. DOI: https://doi.org/10.1080/25740881.2021.1939715
Adhikari, H. S. y Yadav, P. N. (2018). Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. International Journal of Biomaterials, 2018(1): 2952085. https://doi.org/10.1155/2018/2952085. DOI: https://doi.org/10.1155/2018/2952085
Ahsan, S. M., Thomas, M., Reddy, K. K., Sooraparaju, S. G., Asthana, A. y Bhatnagar, I. (2018). Chitosan as biomaterial in drug delivery and tissue engineering. International Journal of Biological Macromolecules, 110: 97-109. https://doi.org/10.1016/J.IJBIOMAC.2017.08.140. DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.140
Akpan, E. I., Gbenebor, O. P., Adeosun, S. O. y Cletus, O. (2020). Solubility, degree of acetylation, and distribution of acetyl groups in chitosan. Handbook of chitin and chitosan: Vol. 1: Preparation and properties, 131-164. https://doi.org/10.1016/B978-0-12-817970-3.00005-5. DOI: https://doi.org/10.1016/B978-0-12-817970-3.00005-5
Almada, M., Luna, M., Gastelum Cabrera, M., Beltrán, O., Martínez Flores, P. D., García Mar, J. A., Topete, A., López Mata, M. A., Reyes Márquez, V., Burboa, M. G., Valdés, M. A. y Juárez-Onofre, J. E. (2023). Nanopartículas basadas en quitosano con potenciales aplicaciones en biomedicina. TECNOCIENCIA Chihuahua, 17(4): e1293. https://doi.org/10.54167/tch.v17i4.1293. DOI: https://doi.org/10.54167/tch.v17i4.1293
Almutairi, F. M., El Rabey, H. A., Tayel, A. A., Alalawy, A. I., Al-Duais, M. A., Sakran, M. I. y Zidan, N. S. (2020). Augmented anticancer activity of curcumin loaded fungal chitosan nanoparticles. International Journal of Biological Macromolecules, 155: 861-867. https://doi.org/10.1016/J.IJBIOMAC.2019.11.207. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.207
Amaral, I. F., Sampaio, P. y Barbosa, M. A. (2006). Three-dimensional culture of human osteoblastic cells in chitosan sponges: the effect of the degree of acetylation. Journal of Biomedical Materials Research Part A, 76A(2): 335-346. https://doi.org/10.1002/JBM.A.30522. DOI: https://doi.org/10.1002/jbm.a.30522
Amor, I. Ben, Hemmami, H., Laouini, S. E., Abdelaziz, A. G. y Barhoum, A. (2024). Influence of chitosan source and degree of deacetylation on antibacterial activity and adsorption of AZO dye from water. Biomass Conversion and Biorefinery, 14(14): 16245-16255. https://doi.org/10.1007/S13399-023-03741-9/TABLES/2. DOI: https://doi.org/10.1007/s13399-023-03741-9
Anitha, A., Deepa, N., Chennazhi, K. P., Lakshmanan, V.-K. y Jayakumar, R. (2014). Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochimica et Biophysica Acta (BBA) – General Subjects, 1840(9): 2730-2743. https://doi.org/10.1016/j.bbagen.2014.06.004. DOI: https://doi.org/10.1016/j.bbagen.2014.06.004
Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Caballero, A. H., Acosta, N., Velasco, H., Mecerreyes, D., Antonio, R., Gimeno, B., María Díez-Pascual, A., Moreno, V. C. y Serra, A. (2021). Chitosan: an overview of its properties and applications. Polymers, 13(19): 3256. https://doi.org/10.3390/POLYM13193256. DOI: https://doi.org/10.3390/polym13193256
Ardean, C., Davidescu, C. M., Nemeş, N. S., Negrea, A., Ciopec, M., Duteanu, N., Negrea, P., Duda‐seiman, D. y Musta, V. (2021). Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. International Journal of Molecular Sciences, 22(14): 7449. https://doi.org/10.3390/IJMS22147449. DOI: https://doi.org/10.3390/ijms22147449
Babii, O., Wang, Z., Liu, G., Martínez, E. C., Van Drunen Littel-Van den Hurk, S. y Chen, L. (2020). Low molecular weight chitosan nanoparticles for CpG oligodeoxynucleotides delivery: impact of molecular weight, degree of deacetylation, and mannosylation on intracellular uptake and cytokine induction. International Journal of Biological Macromolecules, 159: 46-56. https://doi.org/10.1016/J.IJBIOMAC.2020.05.048. DOI: https://doi.org/10.1016/j.ijbiomac.2020.05.048
Bełdowski, P., Przybyłek, M., Sionkowska, A., Cysewski, P., Gadomska, M., Musiał, K. y Gadomski, A. (2022). Effect of chitosan deacetylation on its affinity to type III collagen: a molecular dynamics study. Materials, 15(2): 463. https://doi.org/10.3390/MA15020463. DOI: https://doi.org/10.3390/ma15020463
Ben Amor, I., Hemmami, H., Grara, N., Aidat, O., Ben Amor, A., Zeghoud, S. y Bellucci, S. (2024). Chitosan: a green approach to metallic nanoparticle/nanocomposite synthesis and applications. Polymers, 16(18): 2662. https://doi.org/10.3390/polym16182662. DOI: https://doi.org/10.3390/polym16182662
Berger, J., Reist, M., Mayer, J. M., Felt, O., Peppas, N. A. y Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57(1): 19-34. https://doi.org/10.1016/S0939-6411(03)00161-9. DOI: https://doi.org/10.1016/S0939-6411(03)00161-9
Bhavsar, C., Momin, M., Gharat, S. y Omri, A. (2017). Functionalized and graft copolymers of chitosan and its pharmaceutical applications. Expert opinion on drug delivery, 14(10): 1189-1204. https://doi.org/10.1080/17425247.2017.1241230. DOI: https://doi.org/10.1080/17425247.2017.1241230
Blažević, F., Milekić, T., Romić, M. D., Juretić, M., Pepić, I., Filipović-Grčić, J., Lovrić, J. y Hafner, A. (2016). Nanoparticle-mediated interplay of chitosan and melatonin for improved wound epithelialisation. Carbohydrate Polymers, 146: 445-454. https://doi.org/10.1016/J.CARBPOL.2016.03.074. DOI: https://doi.org/10.1016/j.carbpol.2016.03.074
Carrasco-Sandoval, J., Aranda, M., Henríquez-Aedo, K., Fernández, M., López-Rubio, A. y Fabra, M. J. (2023). Impact of molecular weight and deacetylation degree of chitosan on the bioaccessibility of quercetin encapsulated in alginate/chitosan-coated zein nanoparticles. International Journal of Biological Macromolecules, 242: 124876. https://doi.org/10.1016/J.IJBIOMAC.2023.124876. DOI: https://doi.org/10.1016/j.ijbiomac.2023.124876
Chandy, T., Rao, G. H. R., Wilson, R. F. y Das, G. S. (2002). Delivery of LMW heparin via surface coated chitosan/peg-alginate microspheres prevents thrombosis. Drug Delivery, 9(2): 87-96. https://doi.org/10.1080/10426500290095584. DOI: https://doi.org/10.1080/10426500290095584
Chatelet, C., Damour, O. y Domard, A. (2001). Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials, 22(3): 261-268. https://doi.org/10.1016/S0142-9612(00)00183-6. DOI: https://doi.org/10.1016/S0142-9612(00)00183-6
Chen, Q., Qi, Y., Jiang, Y., Quan, W., Luo, H., Wu, K., Li, S. y Ouyang, Q. (2022). Progress in research of chitosan chemical modification technologies and their applications. Marine Drugs, 20(8): 536. https://doi.org/10.3390/md20080536. DOI: https://doi.org/10.3390/md20080536
Cheung, R., Ng, T., Wong, J. y Chan, W. (2015). Chitosan: an update on potential biomedical and pharmaceutical applications. Marine Drugs, 13(8): 5156-5186. https://doi.org/10.3390/md13085156. DOI: https://doi.org/10.3390/md13085156
Curbelo Hernández, C., Palacio Dubois, Y. y Fanego Hernández, S. (2021). Desacetilación de quitina obtenida por vía química de exoesqueletos de camarón litopenaeus vannamei. Centro Azúcar, 48(3): 53-61. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2223-48612021000300053&lng=es&nrm=iso&tlng=es.
Czechowska-Biskup, R., D. Jarosinska, B. Rokita, P. Ulanski, J. M. Rosiak, (2012). Determination of degree of deacetylation of chitosan – Comparision of methods. Progress on Chemistry and Application of Chitin and its Derivates. Volume XVII. Sociedad Polaca de Quitina.
De Alvarenga, E. S., Pereira de Oliveira, C. y Roberto Bellato, C. (2010). An approach to understanding the deacetylation degree of chitosan. Carbohydrate Polymers, 80(4): 1155-1160. https://doi.org/10.1016/J.CARBPOL.2010.01.037. DOI: https://doi.org/10.1016/j.carbpol.2010.01.037
Duceppe, N. y Tabrizian, M. (2010). Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opinion on Drug Delivery, 7(10): 1191-1207. https://doi.org/10.1517/17425247.2010.514604. DOI: https://doi.org/10.1517/17425247.2010.514604
Dutta, J. y Priyanka. (2022). A facile approach for the determination of degree of deacetylation of chitosan using acid-base titration. Heliyon, 8(7): e09924. https://doi.org/10.1016/j.heliyon.2022.e09924. DOI: https://doi.org/10.1016/j.heliyon.2022.e09924
El Rabey, H. A., Almutairi, F. M., Alalawy, A. I., Al-Duais, M. A., Sakran, M. I., Zidan, N. S. y Tayel, A. A. (2019). Augmented control of drug-resistant Candida spp. via fluconazole loading into fungal chitosan nanoparticles. International Journal of Biological Macromolecules, 141: 511-516. https://doi.org/10.1016/J.IJBIOMAC.2019.09.036. DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.036
Fabiano, A., Beconcini, D., Migone, C., Piras, A. M. y Zambito, Y. (2020). Quaternary ammonium chitosans: the importance of the positive fixed charge of the drug delivery systems. International Journal of Molecular Sciences, 21(18): 6617. https://doi.org/10.3390/IJMS21186617. DOI: https://doi.org/10.3390/ijms21186617
Fan, L., Wu, P., Zhang, J., Gao, S., Wang, L., Li, M., Sha, M., Xie, W. y Nie, M. (2012). Synthesis and anticoagulant activity of the quaternary ammonium chitosan sulfates. International Journal of Biological Macromolecules, 50(1): 31-37. https://doi.org/10.1016/J.IJBIOMAC.2011.09.024. DOI: https://doi.org/10.1016/j.ijbiomac.2011.09.024
Foster, L. J. R., Ho, S., Hook, J., Basuki, M. y Marçal, H. (2015). Chitosan as a biomaterial: influence of degree of deacetylation on its physiochemical, material and biological properties. PLOS ONE, 10(8): e0135153. https://doi.org/10.1371/JOURNAL.PONE.0135153. DOI: https://doi.org/10.1371/journal.pone.0135153
Franca, E. F., Freitas, L. C. G. y Lins, R. D. (2011). Chitosan molecular structure as a function of N-acetylation. Biopolymers, 95(7): 448-460. https://doi.org/10.1002/BIP.21602. DOI: https://doi.org/10.1002/bip.21602
Freier, T., Koh, H. S., Kazazian, K. y Shoichet, M. S. (2005). Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials, 26(29): 5872-5878. https://doi.org/10.1016/J.BIOMATERIALS.2005.02.033. DOI: https://doi.org/10.1016/j.biomaterials.2005.02.033
Garg, U., Chauhan, S., Nagaich, U. y Jain, N. (2019). Current advances in chitosan nanoparticles based drug delivery and targeting. Advanced Pharmaceutical Bulletin, 9(2): 195. https://doi.org/10.15171/APB.2019.023. DOI: https://doi.org/10.15171/apb.2019.023
Giraldo, J. (2015). Propiedades, obtención, caracterización y aplicaciones del quitosano. University of Concepcion, mayo. https://doi.org/10.13140/RG.2.1.3350.9287.
Grewal, A. K. y Salar, R. K. (2024). Chitosan nanoparticle delivery systems: an effective approach to enhancing efficacy and safety of anticancer drugs. Nano TransMed, 3: 100040. https://doi.org/10.1016/j.ntm.2024.100040. DOI: https://doi.org/10.1016/j.ntm.2024.100040
Hamdi, M., Nasri, R., Hajji, S., Nigen, M., Li, S. y Nasri, M. (2019). Acetylation degree, a key parameter modulating chitosan rheological, thermal and film-forming properties. Food Hydrocolloids, 87: 48-60. https://doi.org/10.1016/J.FOODHYD.2018.07.027. DOI: https://doi.org/10.1016/j.foodhyd.2018.07.027
Harugade, A., Sherje, A. P. y Pethe, A. (2023). Chitosan: a review on properties, biological activities and recent progress in biomedical applications. Reactive and Functional Polymers, 191, 105634. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2023.105634. DOI: https://doi.org/10.1016/j.reactfunctpolym.2023.105634
Hasegawa, M., Yagi, K., Iwakawa, S. y Hirai, M. (2001). Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells. Japanese Journal of Cancer Research, 92(4): 459-466. https://doi.org/10.1111/J.1349-7006.2001.TB01116.X. DOI: https://doi.org/10.1111/j.1349-7006.2001.tb01116.x
Hashad, R. A., Ishak, R. A. H., Geneidi, A. S. y Mansour, S. (2017). Surface functionalization of methotrexate-loaded chitosan nanoparticles with hyaluronic acid/human serum albumin: comparative characterization and in vitro cytotoxicity. International Journal of Pharmaceutics, 522(1-2): 128-136. https://doi.org/10.1016/J.IJPHARM.2017.03.008. DOI: https://doi.org/10.1016/j.ijpharm.2017.03.008
Hernández-Parra, H., Cortés, H., Romero-Montero, A., Borbolla-Jiménez, F. V., Magaña, J. J., Del Prado-Audelo, M. L., Florán, B. y Leyva-Gómez, G. (2024). Polymeric nanoparticles decorated with fragmented chitosan as modulation systems for neuronal drug uptake. Carbohydrate Polymers, 336: 122121. https://doi.org/10.1016/J.CARBPOL.2024.122121. DOI: https://doi.org/10.1016/j.carbpol.2024.122121
Huang, G. Q., Zhang, Z. K., Cheng, L. Y. y Xiao, J. X. (2019). Intestine-targeted delivery potency of O-carboxymethyl chitosan-coated layer-by-layer microcapsules: an in vitro and in vivo evaluation. Materials Science and Engineering C, 105. https://doi.org/10.1016/j.msec.2019.110129. DOI: https://doi.org/10.1016/j.msec.2019.110129
Huang, L. -F., Ye, Q. -R., Chen, X. -C., Huang, X. -R., Zhang, Q. -F., Wu, C. -Y., Liu, H. -F. y Yang, C. (2024). Research progress of drug delivery systems targeting the kidneys. Pharmaceuticals, 17(5): 625. https://doi.org/10.3390/ph17050625. DOI: https://doi.org/10.3390/ph17050625
Huang, M., Fong, C. W., Khor, E. y Lim, L. Y. (2005). Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. Journal of Controlled Release, 106(3): 391-406. https://doi.org/10.1016/J.JCONREL.2005.05.004. DOI: https://doi.org/10.1016/j.jconrel.2005.05.004
Huang, Y. y Lapitsky, Y. (2017). On the kinetics of chitosan/tripolyphosphate micro- and nanogel aggregation and their effects on particle polydispersity. Journal of Colloid and Interface Science, 486: 27-37. https://doi.org/10.1016/J.JCIS.2016.09.050. DOI: https://doi.org/10.1016/j.jcis.2016.09.050
Hussain, Md. R., Iman, M. y Maji, T. (2013). Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan- gelatin complex microcapsules. International Journal of Advanced Engineering Applications, 1(4): 4-12.
İlyasoğlu, H., Nadzieja, M. y Guo, Z. (2019). Caffeic acid grafted chitosan as a novel dual-functional stabilizer for food-grade emulsions and additive antioxidant property. Food Hydrocolloids, 95: 168-176. https://doi.org/10.1016/J.FOODHYD.2019.04.043. DOI: https://doi.org/10.1016/j.foodhyd.2019.04.043
Iqbal, N., Ganguly, P., Yildizbakan, L., Raif, E. M., Jones, E., Giannoudis, P. V. y Jha, A. (2024). Chitosan scaffolds from crustacean and fungal sources: a comparative study for bone-tissue-engineering applications. Bioengineering, 11(7): 720. https://doi.org/10.3390/bioengineering11070720. DOI: https://doi.org/10.3390/bioengineering11070720
Jafernik, K., Ładniak, A., Blicharska, E., Czarnek, K., Ekiert, H., Wiącek, A. E. y Szopa, A. (2023). Chitosan-based nanoparticles as effective drug delivery systems – A review. Molecules, 28(4): 1963. https://doi.org/10.3390/MOLECULES28041963. DOI: https://doi.org/10.3390/molecules28041963
Jayakumar, R., Prabaharan, M., Reis, R. L. y Mano, J. F. (2005). Graft copolymerized chitosan—Present status and applications. Carbohydrate Polymers, 62(2): 142-158. https://doi.org/10.1016/J.CARBPOL.2005.07.017. DOI: https://doi.org/10.1016/j.carbpol.2005.07.017
Je, J. Y., Cho, Y. S. y Kim, S. K. (2006). Cytotoxic activities of water-soluble chitosan derivatives with different degree of deacetylation. Bioorganic & Medicinal Chemistry Letters, 16(8): 2122-2126. https://doi.org/10.1016/J.BMCL.2006.01.060. DOI: https://doi.org/10.1016/j.bmcl.2006.01.060
Jhaveri, J., Raichura, Z., Khan, T., Momin, M., Omri, A., Stancanelli, R., Tommasini, S., Anna Ventura, C., Crupi, V. y Majolino, D. (2021). Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules, 26(2): 272. https://doi.org/10.3390/MOLECULES26020272. DOI: https://doi.org/10.3390/molecules26020272
Jiménez-Gómez, C. P., Cecilia, J. A., Guidotti, M. y Soengas, R. (2020). Chitosan: a natural biopolymer with a wide and varied range of applications. Molecules, 25(17): 3981. https://doi.org/10.3390/MOLECULES25173981. DOI: https://doi.org/10.3390/molecules25173981
Kean, T. y Thanou, M. (2010). Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews, 62(1): 3-11. https://doi.org/10.1016/J.ADDR.2009.09.004. DOI: https://doi.org/10.1016/j.addr.2009.09.004
Kiang, T., Wen, J., Lim, H. W. y Leong, K. W. (2004). The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials, 25(22): 5293-5301. https://doi.org/10.1016/J.BIOMATERIALS.2003.12.036. DOI: https://doi.org/10.1016/j.biomaterials.2003.12.036
Kim, S. (2018). Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. International Journal of Polymer Science, 1: 1708172. https://doi.org/10.1155/2018/1708172. DOI: https://doi.org/10.1155/2018/1708172
Kluczka, J. (2024). Chitosan: structural and chemical modification, properties, and application. International Journal of Molecular Sciences, 25(1): 554. https://doi.org/10.3390/IJMS25010554. DOI: https://doi.org/10.3390/ijms25010554
Koski, C., Vu, A. A. y Bose, S. (2020). Effects of chitosan-loaded hydroxyapatite on osteoblasts and osteosarcoma for chemopreventative applications. Materials Science and Engineering: C, 115: 111041. https://doi.org/10.1016/J.MSEC.2020.111041. DOI: https://doi.org/10.1016/j.msec.2020.111041
Kritchenkov, A. S., Andranovitš, S. y Skorik, Y. A. (2017). Chitosan and its derivatives: vectors in gene therapy. Russian Chemical Reviews, 86(3): 231-239. https://doi.org/10.1070/RCR4636. DOI: https://doi.org/10.1070/RCR4636
Kumar, A. y Zhang, K. Y. J. (2019). Human chitinases: structure, function, and inhibitor discovery. Advances in Experimental Medicine and Biology, 1142: 221-251. https://doi.org/10.1007/978-981-13-7318-3_11. DOI: https://doi.org/10.1007/978-981-13-7318-3_11
Kumar, D., Gihar, S., Shrivash, M. K., Kumar, P. y Kundu, P. P. (2020). A review on the synthesis of graft copolymers of chitosan and their potential applications. International Journal of Biological Macromolecules, 163: 2097-2112. https://doi.org/10.1016/J.IJBIOMAC.2020.09.060. DOI: https://doi.org/10.1016/j.ijbiomac.2020.09.060
Kumar, V., Sharma, N., Janghu, P., Pasrija, R., Umesh, M., Chakraborty, P., Sarojini, S. y Thomas, J. (2023). Synthesis and characterization of chitosan nanofibers for wound healing and drug delivery application. Journal of Drug Delivery Science and Technology, 87: 104858. https://doi.org/10.1016/J.JDDST.2023.104858. DOI: https://doi.org/10.1016/j.jddst.2023.104858
Kumirska, J., Weinhold, M. X., Thöming, J. y Stepnowski, P. (2011). Biomedical activity of chitin/chitosan based materials – Influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers, 3(4): 1875-1901. https://doi.org/10.3390/POLYM3041875. DOI: https://doi.org/10.3390/polym3041875
Lavertu, M., Méthot, S., Tran-Khanh, N. y Buschmann, M. D. (2006). High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials, 27(27): 4815-4824. https://doi.org/10.1016/J.BIOMATERIALS.2006.04.029. DOI: https://doi.org/10.1016/j.biomaterials.2006.04.029
Lavlinskaya, M. S., Sorokin, A. V., Mikhaylova, A. A., Kuznetsov, E. I., Baidamshina, D. R., Saranov, I. A., Grechkina, M. V., Holyavka, M. G., Zuev, Y. F., Kayumov, A. R. y Artyukhov, V. G. (2024). The low-waste grafting copolymerization modification of chitosan is a promising approach to obtaining materials for food applications. Polymers, 16(11): 1596. https://doi.org/10.3390/POLYM16111596. DOI: https://doi.org/10.3390/polym16111596
Liu, D., Wei, Y., Yao, P. y Jiang, L. (2006). Determination of the degree of acetylation of chitosan by UV spectrophotometry using dual standards. Carbohydrate Research, 341(6): 782-785. https://doi.org/10.1016/J.CARRES.2006.01.008. DOI: https://doi.org/10.1016/j.carres.2006.01.008
Liu, X., Howard, K. A., Dong, M., Andersen, M., Rahbek, U. L., Johnsen, M. G., Hansen, O. C., Besenbacher, F. y Kjems, J. (2007). The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials, 28(6): 1280-1288. https://doi.org/10.1016/J.BIOMATERIALS.2006.11.004. DOI: https://doi.org/10.1016/j.biomaterials.2006.11.004
Luo, L. J., Huang, C. C., Chen, H. C., Lai, J. Y. y Matsusaki, M. (2018). Effect of deacetylation degree on controlled pilocarpine release from injectable chitosan-g-poly(N-isopropylacrylamide) carriers. Carbohydrate Polymers, 197: 375-384. https://doi.org/10.1016/J.CARBPOL.2018.06.020. DOI: https://doi.org/10.1016/j.carbpol.2018.06.020
Makhlof, A., Tozuka, Y. y Takeuchi, H. (2011). Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. European Journal of Pharmaceutical Sciences, 42(5): 445-451. https://doi.org/10.1016/j.ejps.2010.12.007. DOI: https://doi.org/10.1016/j.ejps.2010.12.007
Mania, S., Banach-Kopeć, A., Staszczyk, K., Kulesza, J., Augustin, E. y Tylingo, R. (2023). An influence of molecular weight, deacetylation degree of chitosan xerogels on their antimicrobial activity and cytotoxicity. Comparison of chitosan materials obtained using lactic acid and CO2 saturation. Carbohydrate Research, 534: 108973. https://doi.org/10.1016/J.CARRES.2023.108973. DOI: https://doi.org/10.1016/j.carres.2023.108973
Mao, S., Sun, W. y Kissel, T. (2010). Chitosan-based formulations for delivery of DNA and siRNA. Advanced Drug Delivery Reviews, 62(1): 12-27. https://doi.org/10.1016/J.ADDR.2009.08.004. DOI: https://doi.org/10.1016/j.addr.2009.08.004
Mikušová, V. y Mikuš, P. (2021). Advances in chitosan-based nanoparticles for drug delivery. International Journal of Molecular Sciences, 22(17): 9652. https://doi.org/10.3390/IJMS22179652. DOI: https://doi.org/10.3390/ijms22179652
Minagawa, T., Okamura, Y., Shigemasa, Y., Minami, S. y Okamoto, Y. (2007). Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydrate Polymers, 67(4): 640-644. https://doi.org/10.1016/J.CARBPOL.2006.07.007. DOI: https://doi.org/10.1016/j.carbpol.2006.07.007
Mirajkar, S., Rathod, P., Pawar, B., Penna, S. y Dalvi, S. (2021). γ-Irradiated chitosan mediates enhanced synthesis and antimicrobial properties of chitosan-silver (Ag) nanocomposites. ACS Omega, 6(50): 34812-34822. https://doi.org/10.1021/ACSOMEGA.1C05358/SUPPL_FILE/AO1C05358_SI_001.PDF. DOI: https://doi.org/10.1021/acsomega.1c05358
Montenegro, H. E., Vega, D. y Hernández, A. (2019). Preparación y caracterización de algunos derivados del quitosano. Scientia, 29: 10-33. https://www.redalyc.org/articulo.oa?id=651769120002.
Mukhopadhyay, P., Sarkar, K., Chakraborty, M., Bhattacharya, S., Mishra, R. y Kundu, P. P. (2013). Oral insulin delivery by self-assembled chitosan nanoparticles: in vitro and in vivo studies in diabetic animal model. Materials Science and Engineering: C, 33(1): 376-382. https://doi.org/10.1016/j.msec.2012.09.001. DOI: https://doi.org/10.1016/j.msec.2012.09.001
Mura, P., Maestrelli, F., Cirri, M. y Mennini, N. (2022). Multiple roles of chitosan in mucosal drug delivery: an updated review. Marine Drugs, 20(5): 335. https://doi.org/10.3390/md20050335. DOI: https://doi.org/10.3390/md20050335
Nasaj, M., Chehelgerdi, M., Asghari, B., Ahmadieh-Yazdi, A., Asgari, M., Kabiri-Samani, S., Sharifi, E. y Arabestani, M. (2024). Factors influencing the antimicrobial mechanism of chitosan action and its derivatives: a review. International Journal of Biological Macromolecules, 277: 134321. https://doi.org/10.1016/J.IJBIOMAC.2024.134321. DOI: https://doi.org/10.1016/j.ijbiomac.2024.134321
Nguyen, H. T. T., Tran, T. N., Ha, A. C. y Huynh, P. D. (2022). Impact of deacetylation degree on properties of chitosan for formation of electrosprayed nanoparticles. Journal of Nanotechnology, 2022(1): 2288892. https://doi.org/10.1155/2022/2288892. DOI: https://doi.org/10.1155/2022/2288892
Özbaş-Turan, S. y Akbuğa, J. (2011). Plasmid DNA-loaded chitosan/TPP nanoparticles for topical gene delivery. Drug Delivery, 18(3): 215-222. https://doi.org/10.3109/10717544.2010.544688. DOI: https://doi.org/10.3109/10717544.2010.544688
Park, J. K., Chung, M. J., Choi, H. N. y Park, Y. Il. (2011). Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. International Journal of Molecular Sciences, 12(1): 266-277. https://doi.org/10.3390/IJMS12010266. DOI: https://doi.org/10.3390/ijms12010266
Pereira, S., Costa-Ribeiro, A., Teixeira, P., Rodríguez-Lorenzo, L., Prado, M., Cerqueira, M. A. y Garrido-Maestu, A. (2023). Evaluation of the antimicrobial activity of chitosan nanoparticles against Listeria monocytogenes. Polymers, 15(18): 3759. https://doi.org/10.3390/POLYM15183759. DOI: https://doi.org/10.3390/polym15183759
Poznanski, P., Hameed, A. y Orczyk, W. (2023). Chitosan and chitosan nanoparticles: parameters enhancing antifungal activity. Molecules, 28(7): 2996. https://doi.org/10.3390/MOLECULES28072996. DOI: https://doi.org/10.3390/molecules28072996
Prasitsilp, M., Jenwithisuk, R., Kongsuwan, K., Damrongchai, N. y Watts, P. (2000). Cellular responses to chitosan in vitro: the importance of deacetylation. Journal of Materials Science: Materials in Medicine, 11(12): 773-778. https://doi.org/10.1023/A:1008997311364/METRICS. DOI: https://doi.org/10.1023/A:1008997311364
Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Progress in Polymer Science, 31(7): 603-632. https://doi.org/10.1016/J.PROGPOLYMSCI.2006.06.001. DOI: https://doi.org/10.1016/j.progpolymsci.2006.06.001
Saikia, C., Gogoi, P. y Maji, T. (2015). Chitosan: a promising biopolymer in drug delivery applications. Journal of Molecular and Genetic Medicine, s4. https://doi.org/10.4172/1747-0862.S4-006. DOI: https://doi.org/10.4172/1747-0862.S4-006
Sánchez-Machado, D. I., López-Cervantes, J., Escárcega-Galaz, A. A., Campas-Baypoli, O. N., Martínez-Ibarra, D. M. y Rascón-León, S. (2024). Measurement of the degree of deacetylation in chitosan films by FTIR, 1H NMR and UV spectrophotometry. MethodsX, 12: 102583. https://doi.org/10.1016/J.MEX.2024.102583. DOI: https://doi.org/10.1016/j.mex.2024.102583
Sang Yoo, H., Eun Lee, J., Chung, H., Chan Kwon, I. y Young Jeong, S. (2005). Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. Journal of Controlled Release, 103(1): 235-243. https://doi.org/10.1016/j.jconrel.2004.11.033. DOI: https://doi.org/10.1016/j.jconrel.2004.11.033
Seda Tığlı, R., Karakeçili, A. y Gümüşderelioğlu, M. (2007). In vitro characterization of chitosan scaffolds: influence of composition and deacetylation degree. Journal of Materials Science: Materials in Medicine, 18(9): 1665-1674. https://doi.org/10.1007/S10856-007-3066-X/METRICS. DOI: https://doi.org/10.1007/s10856-007-3066-x
Sharkawy, A., Barreiro, F. y Rodrigues, A. (2022). Pickering emulsions stabilized with chitosan/gum Arabic particles: effect of chitosan degree of deacetylation on the physicochemical properties and cannabidiol (CBD) topical delivery. Journal of Molecular Liquids, 355: 118993. https://doi.org/10.1016/J.MOLLIQ.2022.118993. DOI: https://doi.org/10.1016/j.molliq.2022.118993
Sivashankari, P. R. y Prabaharan, M. (2017). Deacetylation modification techniques of chitin and chitosan. Chitosan based biomaterials: fundamentals: Volume 1, 1, 117-133. https://doi.org/10.1016/B978-0-08-100230-8.00005-4. DOI: https://doi.org/10.1016/B978-0-08-100230-8.00005-4
Suryani, S., Chaerunisaa, A., Joni, I. M., Ruslin, R., Aspadiah, V., Anton, A., Sartinah, A. y Ramadhan, L. O. A. (2024). The chemical modification to improve solubility of chitosan and its derivatives application, preparation method, toxicity as a nanoparticles. Nanotechnology, Science and Applications, 17: 41-57. https://doi.org/10.2147/NSA.S450026. DOI: https://doi.org/10.2147/NSA.S450026
Taher, F. A., Ibrahim, S. A., El-Aziz, A. A., Abou El-Nour, M. F., El-Sheikh, M. A., El-Husseiny, N. y Mohamed, M. M. (2019). Anti-proliferative effect of chitosan nanoparticles (extracted from crayfish Procambarus clarkii, Crustacea: Cambaridae) against MDA-MB-231 and SK-BR-3, human breast cancer cell lines. International Journal of Biological Macromolecules, 126: 478-487. https://doi.org/10.1016/J.IJBIOMAC.2018.12.151. DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.151
Trung, T. S., Thein-Han, W. W., Qui, N. T., Ng, C. H. y Stevens, W. F. (2006). Functional characteristics of shrimp chitosan and its membranes as affected by the degree of deacetylation. Bioresource Technology, 97(4): 659-663. https://doi.org/10.1016/J.BIORTECH.2005.03.023. DOI: https://doi.org/10.1016/j.biortech.2005.03.023
Unagolla, J. M. y Adikary, S. U. (2015). Adsorption characteristics of cadmium and lead heavy metals into locally synthesized chitosan biopolymer. Tropical Agricultural Research, 26(2): 395. https://doi.org/10.4038/TAR.V26I2.8102. DOI: https://doi.org/10.4038/tar.v26i2.8102
Vasilyev, A. V., Kuznetsova, V. S., Bukharova, T. B., Grigoriev, T. E., Zagoskin, Y. D., Nedorubova, I. A., Babichenko, I. I., Chvalun, S. N., Goldstein, D. V. y Kulakov, A. A. (2021). Influence of the degree of deacetylation of chitosan and BMP-2 concentration on biocompatibility and osteogenic properties of BMP-2/PLA granule-loaded chitosan/β-glycerophosphate hydrogels. Molecules, 26(2): 261. https://doi.org/10.3390/MOLECULES26020261. DOI: https://doi.org/10.3390/molecules26020261
Wang, H. y Roman, M. (2023). Effects of chitosan molecular weight and degree of deacetylation on chitosan − Cellulose nanocrystal complexes and their formation. Molecules, 28(3): 1361. https://doi.org/10.3390/MOLECULES28031361. DOI: https://doi.org/10.3390/molecules28031361
Wang, W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z. y Zhao, K. (2020). Chitosan derivatives and their application in biomedicine. International Journal of Molecular Sciences, 21(2): 487. https://doi.org/10.3390/IJMS21020487. DOI: https://doi.org/10.3390/ijms21020487
Ways, T. M. M., Lau, W. M. y Khutoryanskiy, V. V. (2018). Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers, 10(3): 267. https://doi.org/10.3390/POLYM10030267. DOI: https://doi.org/10.3390/polym10030267
Wu, T. y Zivanovic, S. (2008). Determination of the degree of acetylation (DA) of chitin and chitosan by an improved first derivative UV method. Carbohydrate Polymers, 73(2): 248-253. https://doi.org/10.1016/J.CARBPOL.2007.11.024. DOI: https://doi.org/10.1016/j.carbpol.2007.11.024
Xu, Y. y Du, Y. (2003). Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics, 250(1): 215-226. https://doi.org/10.1016/S0378-5173(02)00548-3. DOI: https://doi.org/10.1016/S0378-5173(02)00548-3
Xue, T., Wang, W., Yang, Z., Wang, F., Yang, L., Li, J., Gan, H., Gu, R., Wu, Z., Dou, G. y Meng, Z. (2022). Accurate determination of the degree of deacetylation of chitosan using UPLC-MS/MS. International Journal of Molecular Sciences, 23(15): 8810. https://doi.org/10.3390/IJMS23158810/S1. DOI: https://doi.org/10.3390/ijms23158810
Yanat, M. y Schroën, K. (2021). Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers, 161: 104849. https://doi.org/10.1016/j.reactfunctpolym.2021.104849. DOI: https://doi.org/10.1016/j.reactfunctpolym.2021.104849
Zhang, J., Tan, W., Luan, F., Yin, X., Dong, F., Li, Q. y Guo, Z. (2018). Synthesis of quaternary ammonium salts of chitosan bearing halogenated acetate for antifungal and antibacterial activities. Polymers, 10(5): 530. https://doi.org/10.3390/POLYM10050530. DOI: https://doi.org/10.3390/polym10050530
Zhou, H. Y., Chen, X. G., Kong, M., Liu, C. S., Cha, D. S. y Kennedy, J. F. (2008). Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydrate Polymers, 73(2): 265-273. https://doi.org/10.1016/J.CARBPOL.2007.11.026. DOI: https://doi.org/10.1016/j.carbpol.2007.11.026
Zhou, X., Kong, M., Cheng, X. J., Feng, C., Li, J., Li, J. J. y Chen, X. G. (2014). In vitro and in vivo evaluation of chitosan microspheres with different deacetylation degree as potential embolic agent. Carbohydrate Polymers, 113: 304-313. https://doi.org/10.1016/J.CARBPOL.2014.06.080. DOI: https://doi.org/10.1016/j.carbpol.2014.06.080