Síntesis de nanocompuestos oro-grafeno para la cuantificación electroquímica de peróxido de hidrógeno y glucosa
Contenido principal del artículo
Resumen
La cuantificación electroquímica de biomarcadores en fluidos frecuentemente emplea nanopartículas metálicas como sustratos de detección. El desarrollo de materiales de cuantificación ha evolucionado en las últimas décadas con la incorporación de materiales de grafeno a los sistemas de medición, generando variantes de compuestos de grafeno-nanometales, Los materiales compuestos aprovechan la gran conductividad electrónica del grafeno y el aumento en la sensibilidad y selectividad que les confiere. El óxido de grafeno y productos reducidos de éste, se han usado tradicionalmente en la manufactura de compuestos de grafeno-nanopartículas metálicas. La tendencia se explica por la relativa facilidad de síntesis de los materiales oxidados de grafeno, sin embargo, esta facilidad tiene como inconveniente la pérdida de propiedades eléctricas de los materiales sintetizados y la posible disminución de sus características de detección. Para evitar estas restricciones, idealmente se deberían de usar como sustratos materiales de grafeno no oxidados, sin embargo, su manufactura no es sencilla. Reportamos aquí un método de preparación de nanoplaquetas de grafeno prístino y su fácil conversión a compuestos decorados con nanopartículas de oro. Describimos el uso de los compuestos como sustratos útiles para la cuantificación electroquímica de glucosa y peróxido de hidrógeno en fluidos.
Descargas
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Chang G, Shu H, Ji K, Oyama M, Liu X, He Y. Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose. Applied Surface Science. 2014;288:524-9.
Cheng T-M, Huang T-K, Lin H-K, Tung S-P, Chen Y-L, Lee C-Y, Chiu H-T. (110)-Exposed gold nanocoral electrode as low onset potential selective glucose sensor. Applied Materials Interfaces. 2010;2(10):2773-80.
Dhara K, Ramachandran T, Bipin G, Nair T. Satheesh Babu Au nanoparticles decorated reduced graphene oxide for the fabrication of disposable nonenzymatic hydrogen peroxide sensor. Journal of Electroanalytical Chemistry. 2016;764:64-70.
Felix S, Grace AN, Jayavel R. Sensitive electrochemical detection of glucose based on Au-CuO nanocomposites. Journal of Physics and Chemistry of Solids. 2018;122:255-60.
Ferrari AC. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications. 2007;143(1-2):47-5.
Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Geim AK. Raman spectrum of graphene and graphene layers. Physical Review Letters. 2006;97(18).
Fievet F, Lagier JP, Figlarz M. Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bulletin. 1989;14(12):29-34.
Gougis M, Tabet-Aoul A, Ma D, Mohamedi M. Laser synthesis and tailor-design of nanosized gold onto carbon nanotubes for non-enzymatic electrochemical glucose sensor. Sensors and Actuators B. 2014;193:363-9.
Han T, Zhang Y, Xu J, Dong J, Liu C-C. Monodisperse AuM (M = Pd, Rh, Pt) bimetallic nanocrystals for enhanced electrochemical detection of H2O2. Sensors and Actuators B. 2015;207:404-12.
Hebié S, Napporn TW, Morais C, Boniface Kokoh K. Sizedependent electrocatalytic activity of free gold nanoparticles for the glucose oxidation reaction. Chem Phys. Chem. 2016;17:1454-62.
Hrapovic S, Liu Y, Male KB, Luong JHT. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Analytical Chemistry. 2004;76:1083-8.
Huq AKMS, A.C. M. Hydrogen peroxide reactions on gold electrodes. Journal of the Electrochemical Society. 1965;112(7):756-.
Ismail NS, Le QH, Yoshikawa H, Saito M. Development of non-enzymatic electrochemical glucose sensor based on graphene oxide nanoribbon - gold nanoparticle hybrid. Electrochimica Acta. 2014;146:98-105.
Jeong H, Nguyen DM, Lee MS, Kim HG, Ko SC, Kwac LK. N-doped graphene-carbon nanotube hybrid networks attaching with gold nanoparticles for glucose non-enzymatic sensor. Materials Science and Engineering: C. 2018;90(1):38-45.
Kurihara L, Chow G, Schoen P. Nanocrystalline metallic powders and films produced by the polyol method. Nanostructured Materials. 1995;5(6):607-13.
Larew LA, Johnson DC. Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media. Interfacial Electrochemistry. 1989;262(1-2):167-82.
Li Y, Zhang J, Zhu H, Yang F, Yang X. Gold nanoparticles mediate the assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing. Electrochimica Acta. 2010;55:5123-8.
Li Y, Ma J, Ma Z. Synthesis of gold nanostars with tunable morphology and their electrochemical application for hydrogen peroxide sensing. Electrochimica Acta. 2013;108:435-40.
Liu W, Hiekel K, Hübner R, Sun H, Ferancova A, Sillanpää M. Pt and Au bimetallic and monometallic nanostructured amperometric sensors for direct detection of hydrogen peroxide: Influences of bimetallic effect and silica support. Sensors and Actuators B. 2018;255:1325-34.
Lv Y, Wang F, Zhu H, Zou X, Tao C- an, Wang J. Electrochemically reduced graphene oxide-nafion/Au nanoparticle modified electrode for hydrogen peroxide sensing. Nanomater Nanotechnol. 2016;6:30-.
Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS. Raman spectroscopy in graphene. Physics Reports. 2009;473(5-6):51-87.
Manickam P, Vashist A, Madhu S, Sadasivam M, Sakthivel A, Kaushik A, Nair M. Gold nanocubes embedded biocompatible hybrid hydrogels for electrochemical detection of H2O2. Bioelectrochemistry. 2020;131:107373-.
Narang J, Chauhan N, Pundir CS. A non-enzymatic sensor for hydrogen peroxide based on polyaniline, multiwalled carbon nanotubes and gold nanoparticles modified Au electrode. Analyst. 2011;136:4460-.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbón films. Science. 2004;306(56969):666-9.
Ocón P, Alonso C, Celdrán R, González Velasco J. Study of the electrooxidation of n-propanol on an Au electrode in basic medium. Interfacial Electrochemistry. 1986;206(1-2):179-96.
Peng Y, Lin D, Gooding JJ, Xue Y, Dai L. Flexible fiber-shaped non-enzymatic sensors with a graphene-metal heterostructure based on graphene fibres decorated with gold nanosheets. Carbon. 2018;136:329336-.
Pogacean F, Socaci C, Pruneanu S, Alexandru RB, Coros M, Magerusan L, Katona G, Turcu R, Borodi G. Graphene based nanomaterials as chemical sensors for hydrogen peroxide - A comparison study of their intrinsic peroxidase catalytic behavior. Sensors and Actuators B. 2015;213:474-83.
Ruiyi L, Juanjuan Z, Zhouping W, Zaijun L, Junkang L, Zhiguo G, Guanglia W. Novel graphene-gold nanohybrid with excellent electrocatalytic performance for the electrochemical detection of glucose. Sensors and Actuators B. 2015;208:421-8.
Shu H, Cao L, Chang G, He H, Zhang Y, He Y. Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose. Electrochimica Acta. 2014;132:524-32.
Tang B, Guoxin H, Gao H. Raman spectroscopic characterization of graphene. Applied Spectroscopy Reviews. 2010;45(5):369-407.
Thanh TD, Balamurugan J, Lee SH, Kim NH, Lee JH. Novel porous gold-palladium nanoalloy network-supported graphene as an advanced catalyst for non-enzymatic hydrogen peroxide sensing. Biosensors and Bioelectronics. 2016;85:669-78.
Thi M, Pham V, Bui Q, Ai-Le P, Nhac-Vu H-T. Novel nanohybrid of blackberry-like gold structures deposited graphene as a free-standing sensor for effective hydrogen peroxide detection. Journal of Solid State Chemistry. 2020;286:121299-.
Thiagarajan S, Su BW, Chen SM. Nano TiO2-Au-KI film sensor for the electrocatalytic oxidation of hydrogen peroxide. Sensors and Actuators B: Chemical. 136(2):464-71.
Tian T, Dong J, Xu J. Direct electrodeposition of highly ordered gold nanotube arrays for use in non-enzymatic amperometric sensing of glucose. Microchimica Acta. 2016;183:1925-32.
Wang X, Guo X, Chen J, Ge C, Zhang H, Liu Y, Zhao L, Zhang Y, Wang Z, Sun L. Au nanoparticles decorated graphene/nickel foam nanocomposite for sensitive detection of hydrogen peroxide. Journal of Materials Science and Technology. 2017;33:246-50.
Won Y-H, Huh K, Stanciu LA. Au nanospheres and nanorods for enzyme-free electrochemical biosensor applications. Biosensors and Bioelectronics. 2011;26:4514-9.
Xue C, Kung C-C, Gao M, Liu C-C, Dai L, Urbas A, Li Q. Facile fabrication of 3D layer-by-layer graphenegold nanorod hybrid architecture for hydrogen peroxide based electrochemical biosensor. Sensing and Bio-Sensing Research. 2015;3:7-11.
Xue K, Zhou S, Shi H, Feng X, Xin H, Song W. A novel amperometric glucose biosensor based on ternary gold nanoparticles/polypyrrole/reduced graphene oxide nanocomposite. Sensors and Actuators B. 2014;203:412-6.
Wu Y, Jiang W, Ren Y, Cai W, Lee WH, Li H, Piner RD, Pope CW, Hao Y, Ji H, Kang J, Ruoff RS. Tuning the doping type and level of graphene with different gold configurations. 2012.
Yuan B, Xu C, Liu L, Shi Y, Li S, Zhang R, Zhang D. Polyethylenimine-bridged graphene oxide-gold film on glassy carbon electrode and its electrocatalytic activity toward nitrite and hydrogen peroxide. Sensors and Actuators B. 2014;198:55-61.
Zhang Y, Sun Y, Liu Z, Xu F, Cui K, Shi Y, Wen Z, Li Z. Au nanocages for highly sensitive and selective detection of H2O2. Journal of Electroanalytical Chemistry. 2011;656:23-8.
Zheng X, Chen W, Wang G, Yu Y, Qin S, Fang J, Wang F, Zhang X-A. The Raman redshift of graphene impacted by gold nanoparticles. AIPA Advances. 2015;5(5):057133-.