Interacciones de nanoestructuras sobre óxido de grafeno
Contenido principal del artículo
Resumen
En el comienzo de la historia del grafeno, el óxido de grafeno representaba únicamente un paso intermedio en la metodología para la obtención de láminas de grafeno. Sin embargo, resultados posteriores de la investigación de este material mostraron que el óxido de grafeno exhibe una estructura con defectos y grupos funcionales que le confieren propiedades únicas. Dada la versatilidad de su superficie, se han propuesto distintas vías de funcionalización que han resultado en la obtención de gran variedad de materiales híbridos. En este trabajo, presentamos la obtención y caracterización de tres materiales funcionalizados basados en láminas de óxido de grafeno decoradas con nanopartículas de plata, dióxido de titanio e hidroxiapatita. Estas nanoestructuras fueron caracterizadas mediante difracción de rayos X, espectroscopia Raman y microscopia electrónica de transmisión. De forma particular se estudió la mejora en las propiedades térmicas del grafeno oxidado-nanopartículas de plata mediante análisis termogravimétrico (TGA), la mejora de las señales Raman mediante el mecanismo químico de SERS en el material decorado con dióxido de titanio y se realizó un ensayo de viabilidad celular MTT, en el que se observó que no presentaba citotoxicidad el grafeno oxidado decorado con hidroxiapatita obtenido al usar urea para la precipitación del biocerámico.
Descargas
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Ajala OJ, Tijani JO, Bankole MT, Abdulkareem AS. A critical review on graphene oxide nanostructured material: properties, synthesis, characterization and application in water and wastewater treatment. Environmental Nanotechnology, Monitoring & Management. 2022;18:100673-. DOI: https://doi.org/10.1016/j.enmm.2022.100673
Amir MNI, Halilu A, Julkapli NM, Ma’amor A. Gold-graphene oxide nanohybrids:a review on their chemical catalysis. Journal of Industrial and Engineering Chemistry. 2020;83:1-13. DOI: https://doi.org/10.1016/j.jiec.2019.11.029
Arif AF, Balgis R, Ogi T, Iskandar F, Kinoshita A, Nakamura K, Okuyama K. Highly conductive nano-sized Magnéli phases titanium oxide (TiO x ). Scientific Reports. 2017;7(1). DOI: https://doi.org/10.1038/s41598-017-03509-y
Ayala-Fonseca A, Amieva EJC, Rodríguez-González C, Loske AM, Fernández F, De Luna Bugallo A, Romero VH, Salas P. Highly dispersible and fluorescent graphene-based materials obtained by underwater shock wave-induced oxidative cleavage. FlatChem. 2022;32:100338-. DOI: https://doi.org/10.1016/j.flatc.2022.100338
Ayala‐Fonseca LA, Amieva EJ ‐C., Rodriguez‐Gonzalez C, Angeles‐Chavez C, De la Rosa E, Castaño VM, Salas P. Enhanced Raman effect of solvothermal synthesized reduced graphene oxide/titanium dioxide nanocomposites. ChemistrySelect. 2020;5(13):3789-97. DOI: https://doi.org/10.1002/slct.202000335
Bao Y, Tian C, Yu H, He J, Song K, Guo J, Zhou X, Zhuo O, Liu S. In situ green synthesis of graphene oxide-silver nanoparticles composite with using gallic acid. Frontiers in Chemistry. 2022;10. DOI: https://doi.org/10.3389/fchem.2022.905781
Berger M. Graphene - all you need to know. 2022;.
Borges KA, Santos LM, Paniago RM, Barbosa NM, Schneider J, Bahnemann DW, Patrocinio AOT, Machado AEH. Characterization of a highly efficient N-doped TiO2 photocatalyst prepared: Via factorial design. New Journal of Chemistry. 2016;40(9):7846-55. DOI: https://doi.org/10.1039/C6NJ00704J
Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Vega Baudrit JR. Silver nanoparticles: technological advances, societal impacts, and metrological challenges. Frontiers in Chemistry. 2017;5. DOI: https://doi.org/10.3389/fchem.2017.00006
Chen J, Liu B, Gao X, Xu D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Advances. 2018;8(49):28048-85. DOI: https://doi.org/10.1039/C8RA04205E
Cho H-W, Liao K-L, Yang J-S, Wu J-J. Revelation of rutile phase by Raman scattering for enhanced photoelectrochemical performance of hydrothermally-grown anatase TiO2 film. Applied Surface Science. 2018;440:125-32. DOI: https://doi.org/10.1016/j.apsusc.2018.01.139
Chung I-M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Research Letters. 2016;11(1):40-. DOI: https://doi.org/10.1186/s11671-016-1257-4
Dhamodharan D, Ghoderao PP, Dhinakaran V, Mubarak S, Divakaran N, Byun H-S. A review on graphene oxide effect in energy storage devices. Journal of Industrial and Engineering Chemistry. 2022;106:20-36. DOI: https://doi.org/10.1016/j.jiec.2021.10.033
Draghi C. Los rusos del grafeno. 2022.
Ferrari AC. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications. 2007;143(1-2):47-5. DOI: https://doi.org/10.1016/j.ssc.2007.03.052
Hardwick LJ, Holzapfel M, Novák P, Dupont L, Baudrin E. Electrochemical lithium insertion into anatase-type TiO2: An in situ Raman microscopy investigation. Electrochimica Acta. 2007;52(17):5357-6. DOI: https://doi.org/10.1016/j.electacta.2007.02.050
Huang G, Lu C-H, Yang H-H. Novel nanomaterials for biomedical, environmental and energy applications. Elsevier; 2019. DOI: https://doi.org/10.1016/B978-0-12-814497-8.00002-3
Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences. 2014;9(6):385-406.
Kusiak-Nejman E, Wanag A, Kowalczyk Ł., Kapica-Kozar J, Colbeau-Justin C, Mendez Medrano MG, Morawski AW. Graphene oxide-TiO2 and reduced graphene oxide-TiO2 nanocomposites: Insight in charge-carrier lifetime measurements. Catalysis Today. 2017;287:189-95. DOI: https://doi.org/10.1016/j.cattod.2016.11.008
Li M, Xiong P, Yan F, Li S, Ren C, Yin Z, Li A, Li H, Ji X, Zheng Y, Cheng Y. An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioactive Materials. 2018;3(1):1-18. DOI: https://doi.org/10.1016/j.bioactmat.2018.01.001
Luo Y, Li M, Hu G, Tang T, Wen J, Li X, Wang L. Enhanced photocatalytic activity of sulfur-doped graphene quantum dots decorated with TiO2 nanocomposites. Materials Research Bulletin. 2018;97:428-35. DOI: https://doi.org/10.1016/j.materresbull.2017.09.038
Mamaghani AH, Haghighat F, Lee C-S. Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance. Chemosphere. 2019;219:804-25. DOI: https://doi.org/10.1016/j.chemosphere.2018.12.029
Nam CT, Yang W-D, Duc LM. Study on photocatalysis of TiO 2 nanotubes prepared by methanol-thermal synthesis at low temperature. Bulletin of Materials Science. 2013;36(5):779-88. DOI: https://doi.org/10.1007/s12034-013-0546-0
PA N, Mohamed S, Singaravelu DL, Brindhadevi K, Pugazhendhi A. A review on graphene / graphene oxide supported electrodes for microbial fuel cell applications: Challenges and prospects. Chemosphere. 2022;296:133983-. DOI: https://doi.org/10.1016/j.chemosphere.2022.133983
Pop E, Varshney V, Roy AK. Thermal properties of graphene: fundamentals and applications. MRS Bulletin. 2012;37(12):1273-81. DOI: https://doi.org/10.1557/mrs.2012.203
Pougin A, Lüken A, Klinkhammer C, Hiltrop D, Kauer M, Tölle K, HavenithNewen M, Morgenstern K, Grünert W, Muhler M, Strunk J. Probing oxide reduction and phase transformations at the Au-TiO2 interface by vibrational spectroscopy. Topics in Catalysis. 2017;60(19-20):1744-53. DOI: https://doi.org/10.1007/s11244-017-0851-8
Rajender G, Kumar J, Giri PK. Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis. Applied Catalysis B: Environmental. 2018;224:960-72. DOI: https://doi.org/10.1016/j.apcatb.2017.11.042
Rodríguez-González C, Salas P, López-Marín LM, Millán-Chiu B, De la Rosa E. Hydrothermal synthesis of graphene oxide/multiform hydroxyapatite nanocomposite: its influence on cell cytotoxicity. Materials Research Express. 2018;5(12):125023-. DOI: https://doi.org/10.1088/2053-1591/aae29c
Rodríguez‐González C, Velázquez‐Villalba P, Salas P, Castaño VM. Green synthesis of nanosilver‐decorated graphene oxide sheets. IET Nanobiotechnology. 2016;10(5):301-7. DOI: https://doi.org/10.1049/iet-nbt.2015.0043
Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chemical Research in Toxicology. 2012;25(1):15-34. DOI: https://doi.org/10.1021/tx200339h
Seifalian A, Alexander B. Graphene oxide and biological properties. 2022;.
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558-65. DOI: https://doi.org/10.1016/j.carbon.2007.02.034
Stankovich S, Piner RD, Nguyen SBT, Ruoff RS. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon. 2006;44(15):3342-7. DOI: https://doi.org/10.1016/j.carbon.2006.06.004
Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena. 2014;195:145-54. DOI: https://doi.org/10.1016/j.elspec.2014.07.003
Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science. 2017;249:321-30. DOI: https://doi.org/10.1016/j.cis.2017.04.007
Tayel A, Ramadan A, El Seoud O, Tayel A, Ramadan AR, El Seoud OA. Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: synthesis, characterization and photocatalytic applications for water decontamination. Catalysts. 2018;8(11):491-. DOI: https://doi.org/10.3390/catal8110491
Vega-Baudrit J, Gamboa SM, Rojas ER, Martinez VV. Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent. International Journal of Biosensors & Bioelectronics. 2019;5(5). DOI: https://doi.org/10.15406/ijbsbe.2019.05.00172
Walton RI. Solvothermal synthesis of cerium oxides. Progress in Crystal Growth and Characterization of Materials. 2011;57(4):93-108. DOI: https://doi.org/10.1016/j.pcrysgrow.2011.10.002
Warren BE. X-ray diffraction in random layer lattices. Physical Review. 1941;59(9):693-8. DOI: https://doi.org/10.1103/PhysRev.59.693
Yan J, Wu G, Guan N, Li L, Li Z, Cao X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Physical Chemistry Chemical Physics. 2013;15(26):10978-. DOI: https://doi.org/10.1039/c3cp50927c
, Zhang J, Chen F, Anpo M. Synthesis and characterization of nitrogen-doped TiO 2 nanophotocatalyst with high visible light activity. 2007.
Yin S, Fujishiro Y, Wu J, Aki M, Sato T. Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions. Journal of Materials Processing Technology. 2003;137(1-3):45-8. DOI: https://doi.org/10.1016/S0924-0136(02)01065-8
Zhang Y, Wu W, Zhang K, Liu C, Yu A, Peng M, Zhai J. Raman study of 2D anatase TiO2 nanosheets. Phys. Chem. Chem. Phys. 2016;18(47):32178-84. DOI: https://doi.org/10.1039/C6CP05496J
Zhou A, Bai J, Hong W, Bai H. Electrochemically reduced graphene oxide: preparation, composites, and applications. Carbon. 2022;191:301-32. DOI: https://doi.org/10.1016/j.carbon.2022.01.056
Zhou Q, Zhong Y-H, Chen X, Wang Y, Huang X-J, Wu Y-C. GrapheneTiO2 functional nanocomposite: from synthesis to applications. Journal of Nanoscience and Nanotechnology. 2016;16(9):9327-45. DOI: https://doi.org/10.1166/jnn.2016.12454