Propiedades fisicomecánicas y funcionales de películas a base de quitosano incorporadas con nanopartículas de plata
Contenido principal del artículo
Resumen
Desarrollar películas biodegradables, compatibles y no tóxicas a base de quitosano que permitan la incorporación de nanocompuestos puede ser favorable para su aplicación en diversas industrias como la alimenticia. El objetivo fue desarrollar películas a base de una matriz biopolimérica de quitosano adicionadas con nanopartículas de plata (AgNPs) y evaluar sus propiedades fisicomecánicas, fisicoquímicas y microbiológicas para aplicaciones de envasado de alimentos. Se sintetizaron soluciones AgNPs por el método Lee-Meisel y quitosano (Q), para evaluar la actividad antimicrobiana. Se desarrollaron películas de Q y Q-AgNPs por el método casting y se evaluaron las propiedades fisicomecánicas mediante microscopía electrónica de barrido de emisión de campo, color, resistencia a la tensión, elongación, elasticidad, humedad, solubilidad, grado de hinchamiento, permeabilidad al vapor de agua, velocidad de transmisión del vapor de agua y grosor. La combinación de Q-AgNPs mostró efecto bacteriostático, mientras que las AgNPs mostraron un retraso en el inicio de la fase de crecimiento logarítmico y disminuyó el crecimiento, respecto al control. Las películas Q y Q-AgNPs se observaron homogéneas sin porosidad. El color de las películas Q-AgNPs fue ligeramente más amarillo y menos luminoso, lo que podría conferir protección de la luz. En el mismo sentido, fueron menos permeables al vapor de agua lo que puede conferirles una función de barrera, ofreciendo un mejor efecto protector de los alimentos; además, fueron 9% más resistentes a la elongación, lo cual las hace más maleables; bajo estas condiciones, se concluye que las películas Q-AgNPs son factibles para aplicarse como recubrimientos o empaques para alimentos.
Descargas
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Azmy, E., Hashem, H., Mohamed, E., Negm, N. (2019). Synthesis, characterization, swelling and antimicrobial efficacies of chemically modified chitosan biopolymer. Journal of Molecular Liquids, 284: 748-754. https://doi.org/10.1016/j.molliq.2019.04.054. DOI: https://doi.org/10.1016/j.molliq.2019.04.054
Chang, W., Liu, F., Rizwan, H., Huang, Z., Douglas, H., Zhong, F. (2019). Preparation of chitosan films by neutralization for improving their preservation effects on chilled meat. Food Hydrocolloids, 90: 50-61. https://doi.org/10.1016/j.foodhyd.2018.09.026. DOI: https://doi.org/10.1016/j.foodhyd.2018.09.026
Chen, X., Liu, X., Huang, K. (2019). Large-scale synthesis of size-controllable Ag nanoparticles by reducing silver halide colloids with different sizes. Chinese Chemical Letters, 30: 797-800. https://doi.org/10.1016/j.cclet.2018.11.011. DOI: https://doi.org/10.1016/j.cclet.2018.11.011
Deepak, K., Bilal, M., Shanooba, P., S. S. Lele. (2019). Physicochemical and functional properties of chitosan-based nano-composite films incorporated with biogenic silver nanoparticles. Carbohydrate Polymers, 211: 124-132. https://doi.org/10.1016/j.carbpol.2019.02.005.
Elmehbad, N. y Mohamed, N. (2020). Designing, preparation and evaluation of the antimicrobial activity of biomaterials based on chitosan modified with silver nanoparticles. International Journal of Biological Macromolecules, 151: 92-103.
https://doi.org/10.1016/j.ijbiomac.2020.01.298. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.298
Geueke, B., Groh, K., Muncke, J. (2018). Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. Journal of Cleaner Production, 193: 491-505. https://doi.org/10.1016/j.jclepro.2018.05.005. DOI: https://doi.org/10.1016/j.jclepro.2018.05.005
Gu, B., Jiang, Q., Luo, B., Liu, C., Ren, J., Wang, X. y Wang, X. (2021). A sandwich-like chitosan-based antibacterial nanocomposite film with reduced graphene oxide immobilized silver nanoparticles. Carbohydrate Polymers, 260: 1-11, 117835. https://doi.org/10.1016/j.carbpol.2021.117835. DOI: https://doi.org/10.1016/j.carbpol.2021.117835
Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Wilhelm, H., Pulvirenti, A. (2019). Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19: 31-39. https://doi.org/10.1016/j.fpsl.2018.11.015. DOI: https://doi.org/10.1016/j.fpsl.2018.11.015
Hasim, S., Romero, M., Morris, M. (2016). The potential application of antimicrobial silver polyvinyl chloride nanocomposite films to extend the shelf-life of chicken breast fillets. Food Bioprocess Technol, 9: 1661-1673. https://doi.org/10.1007/s11947-016-1745-7. DOI: https://doi.org/10.1007/s11947-016-1745-7
Homez-Jara, A., Daza, L. D., Aguirre, D. M., Muñoz, J. A., Solanilla, J. F. y Váquiro, H. A. (2018). Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures. International Journal of Biological Macromolecules, 113: 1233-1240. https://doi.org/10.1016/j.ijbiomac.2018.03.057. DOI: https://doi.org/10.1016/j.ijbiomac.2018.03.057
Jamaleddin P., Hadi, S., Pournasir, N., Mohammadzadeh P. (2019). Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packaging and Shelf Life, 22: 100420. https://doi.org/10.1016/j.fpsl.2019.100420. DOI: https://doi.org/10.1016/j.fpsl.2019.100420
Kadam, D., Momin, B., Palamthodi, S., Lele, S. (2019). Physicochemical and functional properties of chitosan-based nanocomposite films incorporated with biogenic silver nanoparticles. Carbohydrate Polymers, 211: 124-132. https://doi.org/10.1016/j.carbpol.2019.02.005. DOI: https://doi.org/10.1016/j.carbpol.2019.02.005
Kalaivani, R., Maruthupandy, M., Muneeswaran, T., Beevi, A. H., Anand, M., Ramakritinan, C. M. y Kumaraguru, A. K. (2018). Synthesis of chitosan mediated silver nanoparticles (AgNPs) for potential antimicrobial applications. Frontiers in Laboratory Medicine, 2(1): 30-35. https://doi.org/10.1016/j.flm.2018.04.002. DOI: https://doi.org/10.1016/j.flm.2018.04.002
Kalpana, S., Priyadarshini, S. R., Leena, Maria, Moses, J. A., Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93: 145-157. https://doi.org/10.1016/j.tifs.2019.09.008. DOI: https://doi.org/10.1016/j.tifs.2019.09.008
Khalil, N., El-Ghany, N., Rodríguez-Couto, S. (2019). Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere, 218: 477-486. https://doi.org/10.1016/j.chemosphere.2018.11.129. DOI: https://doi.org/10.1016/j.chemosphere.2018.11.129
Mathew, S., Snigdha, S., Mathew, J. y Radhakrishnan, E. (2019). Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packaging and Shelf Life, 19: 155-166. https://doi.org/10.1016/j.fpsl.2018.12.009. DOI: https://doi.org/10.1016/j.fpsl.2018.12.009
Mathew, S., Victório, C. P., Sidhi, J. y BH, B. T. (2020). Biosynthesis of silver nanoparticle using flowers of Calotropis gigantea (L.) WT Aiton and activity against pathogenic bacteria. Arabian Journal of Chemistry, 13(12): 9139-9144. https://doi.org/10.1016/j.arabjc.2020.10.038. DOI: https://doi.org/10.1016/j.arabjc.2020.10.038
Mythili, R., Selvankumar, T., Kamala-Kannan, S., Sudhakar, C., Ameen, F., Al-Sabri, A. y Kim, H. (2018). Utilization of market vegetable waste for silver nanoparticle synthesis and its antibacterial activity. Materials Letters, 225: 101-104. https://doi.org/10.1016/j.matlet.2018.04.111. DOI: https://doi.org/10.1016/j.matlet.2018.04.111
Ortega, F., Giannuzzi, L., Arce, V., García, M. (2017). Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids, 70: 152-162. https://doi.org/10.1016/j.foodhyd.2017.03.036. DOI: https://doi.org/10.1016/j.foodhyd.2017.03.036
Parthiban, E., Manivannan, N., Ramanibai, R., Mathivanan, N. (2018). Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnology Reports, 20: xx-xxx. https://doi.org/10.1016/j.btre.2018.e00297. DOI: https://doi.org/10.1016/j.btre.2018.e00297
Pawcenis, D., Chlebda, D., Jędrzejczyk, R., Leśniak, M., Sitarz, M., Łojewska, J. (2019). Preparation of silver nanoparticles using different fractions of TEMPOoxidized nanocellulose. European Polymer Journal, 116: 242-255. https://doi.org/10.1016/j.eurpolymj.2019.04.022. DOI: https://doi.org/10.1016/j.eurpolymj.2019.04.022
Qin, Y., Liu, Y., Yuan, L., Yong, H., Liu, J. (2019). Preparation and characterization of antioxidant, antimicrobial and pH sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids, 96: 102-111. https://doi.org/10.1016/j.foodhyd.2019.05.017. DOI: https://doi.org/10.1016/j.foodhyd.2019.05.017
Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S. A. A. y Harish, R. (2016). Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Materials Letters, 180: 264-267. https://doi.org/10.1016/j.matlet.2016.05.172. DOI: https://doi.org/10.1016/j.matlet.2016.05.172
Regiel, A., Irusta, S., Kyzioł, A., Arruebo, M., Santamaria, J. (2013). Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology, 24: 1-13. https://doi.org/10.1088/0957-4484/24/1/015101. DOI: https://doi.org/10.1088/0957-4484/24/1/015101
Roy, S., Shankar, S., Rhim, J. (2019). Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocolloids, 88: 237-246. https://doi.org/10.1016/j.foodhyd.2018.10.013. DOI: https://doi.org/10.1016/j.foodhyd.2018.10.013
Salari, M., Khiabani, M., Mokarram, R., Ghanbarzadeh, B., Kafil, H. (2018). Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocolloids, 84: 414-423. https://doi.org/10.1016/j.foodhyd.2018.05.037. DOI: https://doi.org/10.1016/j.foodhyd.2018.05.037
Senthilkumar, P., Yaswant, G., Kavitha, S., Chandramohan, E., Kowsalya, G., Vijay, R. y Kumar, D. R. S. (2019). Preparation and haracterization of hybrid chitosan-silver nanoparticles (Chi-Ag NPs); A potential antibacterial agent. International Journal of Biological Macromolecules, 141: 290-298. https://doi.org/10.1016/j.ijbiomac.2019.08.234. DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.234
Shah, A., Hussain, I. y Murtaza, G. (2018). Chemical synthesis and characterization of chitosan/silver nanocomposites films and their potential antibacterial activity. International Journal of Biological Macromolecules, 116: 520-529. https://doi.org/10.1016/j.ijbiomac.2018.05.057. DOI: https://doi.org/10.1016/j.ijbiomac.2018.05.057
Shankar, S., Wang, L., Rhim, J. (2016). Preparations and characterization of alginate/silver composite films: Effect of types of silver particles. Carbohydrate Polymers, 146: 208-216. http://dx.doi.org/10.1016/j.carbpol.2016.03.026. DOI: https://doi.org/10.1016/j.carbpol.2016.03.026
Souza, V., Fernando, A., Pires, J., Freitas P., López, A., Braz, F. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops & Products, 107: 565-572. http://dx.doi.org/10.1016/j.indcrop.2017.04.056. DOI: https://doi.org/10.1016/j.indcrop.2017.04.056
Wu, Z., Huang, X., Yi-Chen, Li, Xiao, H. y Wang, X. (2018). Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydrate Polymers, 199: 210-218. https://doi.org/10.1016/j.carbpol.2018.07.030. DOI: https://doi.org/10.1016/j.carbpol.2018.07.030
Yong, H., Wang, X., Bai, R., Miao, Z., Zhang, X., Liu, J. (2019). Development of antioxidant and intelligent pH-sensing packaging films by incorporating purplefleshed sweet potato extract into chitosan matrix. Food Hydrocolloids, 90: 216-224. https://doi.org/10.1016/j.foodhyd.2018.12.015. DOI: https://doi.org/10.1016/j.foodhyd.2018.12.015
Zhang, W. y Weibo Jiang, W. (2020). Antioxidant and antibacterial chitosan film with tea polyphenols mediated green synthesis silver nanoparticle via a novel one-pot method. International Journal of Biological Macromolecules, 155: 1252-1261. https://doi.org/10.1016/j.ijbiomac.2019.11.093. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.093