Propiedades fisicomecánicas y funcionales de películas a base de quitosano incorporadas con nanopartículas de plata

Contenido principal del artículo

Dulce María González López
http://orcid.org/0000-0002-2722-486X
Jaime Amadeo Bustos Martínez
http://orcid.org/0000-0001-9763-754X
Aída Hamdan Partida
http://orcid.org/0000-0002-5827-3576
Beatriz Sofía Schettino-Bermúdez
http://orcid.org/0000-0002-9216-156X
Francisco Héctor Chamorro-Ramírez
https://orcid.org/0000-0001-9781-119X

Resumen

Desarrollar películas biodegradables, compatibles y no tóxicas a base de quitosano que permitan la incorporación de nanocompuestos puede ser favorable para su aplicación en diversas industrias como la alimenticia. El objetivo fue desarrollar películas a base de una matriz biopolimérica de quitosano adicionadas con nanopartículas de plata (AgNPs) y evaluar sus propiedades fisicomecánicas, fisicoquímicas y microbiológicas para aplicaciones de envasado de alimentos. Se sintetizaron soluciones AgNPs por el método Lee-Meisel y quitosano (Q), para evaluar la actividad antimicrobiana. Se desarrollaron películas de Q y Q-AgNPs por el método casting y se evaluaron las propiedades fisicomecánicas mediante microscopía electrónica de barrido de emisión de campo, color, resistencia a la tensión, elongación, elasticidad, humedad, solubilidad, grado de hinchamiento, permeabilidad al vapor de agua, velocidad de transmisión del vapor de agua y grosor. La combinación de Q-AgNPs mostró efecto bacteriostático, mientras que las AgNPs mostraron un retraso en el inicio de la fase de crecimiento logarítmico y disminuyó el crecimiento, respecto al control. Las películas Q y Q-AgNPs se observaron homogéneas sin porosidad. El color de las películas Q-AgNPs fue ligeramente más amarillo y menos luminoso, lo que podría conferir protección de la luz. En el mismo sentido, fueron menos permeables al vapor de agua lo que puede conferirles una función de barrera, ofreciendo un mejor efecto protector de los alimentos; además, fueron 9% más resistentes a la elongación, lo cual las hace más maleables; bajo estas condiciones, se concluye que las películas Q-AgNPs son factibles para aplicarse como recubrimientos o empaques para alimentos. 

Detalles del artículo

Cómo citar
González López, D. M., Bustos Martínez, J. A., Partida, A. H., Schettino-Bermúdez, B. S., & Chamorro-Ramírez, F. H. (2024). Propiedades fisicomecánicas y funcionales de películas a base de quitosano incorporadas con nanopartículas de plata. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 17(32), 1e-18e. https://doi.org/10.22201/ceiich.24485691e.2024.32.69752
Sección
Artículos de investigación

Citas

Azmy, E., Hashem, H., Mohamed, E., Negm, N. (2019). Synthesis, characterization, swelling and antimicrobial efficacies of chemically modified chitosan biopolymer. Journal of Molecular Liquids, 284: 748-754. https://doi.org/10.1016/j.molliq.2019.04.054.

Chang, W., Liu, F., Rizwan, H., Huang, Z., Douglas, H., Zhong, F. (2019). Preparation of chitosan films by neutralization for improving their preservation effects on chilled meat. Food Hydrocolloids, 90: 50-61. https://doi.org/10.1016/j.foodhyd.2018.09.026.

Chen, X., Liu, X., Huang, K. (2019). Large-scale synthesis of size-controllable Ag nanoparticles by reducing silver halide colloids with different sizes. Chinese Chemical Letters, 30: 797-800. https://doi.org/10.1016/j.cclet.2018.11.011.

Deepak, K., Bilal, M., Shanooba, P., S. S. Lele. (2019). Physicochemical and functional properties of chitosan-based nano-composite films incorporated with biogenic silver nanoparticles. Carbohydrate Polymers, 211: 124-132. https://doi.org/10.1016/j.carbpol.2019.02.005.

Elmehbad, N. y Mohamed, N. (2020). Designing, preparation and evaluation of the antimicrobial activity of biomaterials based on chitosan modified with silver nanoparticles. International Journal of Biological Macromolecules, 151: 92-103.

https://doi.org/10.1016/j.ijbiomac.2020.01.298.

Geueke, B., Groh, K., Muncke, J. (2018). Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. Journal of Cleaner Production, 193: 491-505. https://doi.org/10.1016/j.jclepro.2018.05.005.

Gu, B., Jiang, Q., Luo, B., Liu, C., Ren, J., Wang, X. y Wang, X. (2021). A sandwich-like chitosan-based antibacterial nanocomposite film with reduced graphene oxide immobilized silver nanoparticles. Carbohydrate Polymers, 260: 1-11, 117835. https://doi.org/10.1016/j.carbpol.2021.117835.

Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Wilhelm, H., Pulvirenti, A. (2019). Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19: 31-39. https://doi.org/10.1016/j.fpsl.2018.11.015.

Hasim, S., Romero, M., Morris, M. (2016). The potential application of antimicrobial silver polyvinyl chloride nanocomposite films to extend the shelf-life of chicken breast fillets. Food Bioprocess Technol, 9: 1661-1673. https://doi.org/10.1007/s11947-016-1745-7.

Homez-Jara, A., Daza, L. D., Aguirre, D. M., Muñoz, J. A., Solanilla, J. F. y Váquiro, H. A. (2018). Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures. International Journal of Biological Macromolecules, 113: 1233-1240. https://doi.org/10.1016/j.ijbiomac.2018.03.057.

Jamaleddin P., Hadi, S., Pournasir, N., Mohammadzadeh P. (2019). Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packaging and Shelf Life, 22: 100420. https://doi.org/10.1016/j.fpsl.2019.100420.

Kadam, D., Momin, B., Palamthodi, S., Lele, S. (2019). Physicochemical and functional properties of chitosan-based nanocomposite films incorporated with biogenic silver nanoparticles. Carbohydrate Polymers, 211: 124-132. https://doi.org/10.1016/j.carbpol.2019.02.005.

Kalaivani, R., Maruthupandy, M., Muneeswaran, T., Beevi, A. H., Anand, M., Ramakritinan, C. M. y Kumaraguru, A. K. (2018). Synthesis of chitosan mediated silver nanoparticles (AgNPs) for potential antimicrobial applications. Frontiers in Laboratory Medicine, 2(1): 30-35. https://doi.org/10.1016/j.flm.2018.04.002.

Kalpana, S., Priyadarshini, S. R., Leena, Maria, Moses, J. A., Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93: 145-157. https://doi.org/10.1016/j.tifs.2019.09.008.

Khalil, N., El-Ghany, N., Rodríguez-Couto, S. (2019). Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere, 218: 477-486. https://doi.org/10.1016/j.chemosphere.2018.11.129.

Mathew, S., Snigdha, S., Mathew, J. y Radhakrishnan, E. (2019). Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packaging and Shelf Life, 19: 155-166. https://doi.org/10.1016/j.fpsl.2018.12.009.

Mathew, S., Victório, C. P., Sidhi, J. y BH, B. T. (2020). Biosynthesis of silver nanoparticle using flowers of Calotropis gigantea (L.) WT Aiton and activity against pathogenic bacteria. Arabian Journal of Chemistry, 13(12): 9139-9144. https://doi.org/10.1016/j.arabjc.2020.10.038.

Mythili, R., Selvankumar, T., Kamala-Kannan, S., Sudhakar, C., Ameen, F., Al-Sabri, A. y Kim, H. (2018). Utilization of market vegetable waste for silver nanoparticle synthesis and its antibacterial activity. Materials Letters, 225: 101-104. https://doi.org/10.1016/j.matlet.2018.04.111.

Ortega, F., Giannuzzi, L., Arce, V., García, M. (2017). Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids, 70: 152-162. https://doi.org/10.1016/j.foodhyd.2017.03.036.

Parthiban, E., Manivannan, N., Ramanibai, R., Mathivanan, N. (2018). Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnology Reports, 20: xx-xxx. https://doi.org/10.1016/j.btre.2018.e00297.

Pawcenis, D., Chlebda, D., Jędrzejczyk, R., Leśniak, M., Sitarz, M., Łojewska, J. (2019). Preparation of silver nanoparticles using different fractions of TEMPOoxidized nanocellulose. European Polymer Journal, 116: 242-255. https://doi.org/10.1016/j.eurpolymj.2019.04.022.

Qin, Y., Liu, Y., Yuan, L., Yong, H., Liu, J. (2019). Preparation and characterization of antioxidant, antimicrobial and pH sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids, 96: 102-111. https://doi.org/10.1016/j.foodhyd.2019.05.017.

Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S. A. A. y Harish, R. (2016). Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Materials Letters, 180: 264-267. https://doi.org/10.1016/j.matlet.2016.05.172.

Regiel, A., Irusta, S., Kyzioł, A., Arruebo, M., Santamaria, J. (2013). Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology, 24: 1-13. https://doi.org/10.1088/0957-4484/24/1/015101.

Roy, S., Shankar, S., Rhim, J. (2019). Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocolloids, 88: 237-246. https://doi.org/10.1016/j.foodhyd.2018.10.013.

Salari, M., Khiabani, M., Mokarram, R., Ghanbarzadeh, B., Kafil, H. (2018). Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocolloids, 84: 414-423. https://doi.org/10.1016/j.foodhyd.2018.05.037.

Senthilkumar, P., Yaswant, G., Kavitha, S., Chandramohan, E., Kowsalya, G., Vijay, R. y Kumar, D. R. S. (2019). Preparation and haracterization of hybrid chitosan-silver nanoparticles (Chi-Ag NPs); A potential antibacterial agent. International Journal of Biological Macromolecules, 141: 290-298. https://doi.org/10.1016/j.ijbiomac.2019.08.234.

Shah, A., Hussain, I. y Murtaza, G. (2018). Chemical synthesis and characterization of chitosan/silver nanocomposites films and their potential antibacterial activity. International Journal of Biological Macromolecules, 116: 520-529. https://doi.org/10.1016/j.ijbiomac.2018.05.057.

Shankar, S., Wang, L., Rhim, J. (2016). Preparations and characterization of alginate/silver composite films: Effect of types of silver particles. Carbohydrate Polymers, 146: 208-216. http://dx.doi.org/10.1016/j.carbpol.2016.03.026.

Souza, V., Fernando, A., Pires, J., Freitas P., López, A., Braz, F. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops & Products, 107: 565-572. http://dx.doi.org/10.1016/j.indcrop.2017.04.056.

Wu, Z., Huang, X., Yi-Chen, Li, Xiao, H. y Wang, X. (2018). Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydrate Polymers, 199: 210-218. https://doi.org/10.1016/j.carbpol.2018.07.030.

Yong, H., Wang, X., Bai, R., Miao, Z., Zhang, X., Liu, J. (2019). Development of antioxidant and intelligent pH-sensing packaging films by incorporating purplefleshed sweet potato extract into chitosan matrix. Food Hydrocolloids, 90: 216-224. https://doi.org/10.1016/j.foodhyd.2018.12.015.

Zhang, W. y Weibo Jiang, W. (2020). Antioxidant and antibacterial chitosan film with tea polyphenols mediated green synthesis silver nanoparticle via a novel one-pot method. International Journal of Biological Macromolecules, 155: 1252-1261. https://doi.org/10.1016/j.ijbiomac.2019.11.093.