Nanopartículas de TiO2 fotocatalíticas incorporadas en materiales de construcción. ¡Construyamos edificios inteligentes!

Contenido principal del artículo

Luis Felipe Rodríguez-Alfaro
http://orcid.org/0000-0002-7167-7874
Edith Luévano Hipólito
https://orcid.org/0000-0003-2988-405X
Leticia Myriam Torres-Martínez
https://orcid.org/0000-0003-3328-0240

Resumen

En las grandes áreas metropolitanas del mundo se está generando una alta concentración de contaminantes atmosféricos, producto del creciente número de vehículos, fábricas, industrias y construcciones, los cuales están propiciando serios problemas de calidad del aire, de salud pública y de deterioro estructural. Para abordar estos problemas, el uso, en los últimos años, de los materiales de construcción fotocatalíticos ha surgido como una nueva tecnología alternativa para remediar la contaminación de la atmósfera urbana, mantener la estética y la funcionalidad de las infraestructuras. Las grandes áreas superficiales expuestas al sol de cualquier infraestructura proporcionan las condiciones óptimas para la aplicación de materiales fotocatalíticos. El gran interés por esta tecnología ha alentado la creación de diversos materiales de construcción inteligentes con propiedades fotocatalíticas, al incorporarles nanopartículas de TiO2. Por ese motivo, hoy en día se dispone de una gran variedad de productos, tales como pinturas, vidrio, estucos, pavimentos, cementos, entre muchos otros, cuya aplicación se ha promovido recientemente. El propósito del presente trabajo es hacer una revisión integral del proceso fotocatalítico, sus propiedades y sus aplicaciones en la industria de la construcción, así como de los problemas y limitaciones de esta tecnología.

Detalles del artículo

Cómo citar
Rodríguez-Alfaro, L. F., Luévano Hipólito, E., & Torres-Martínez, L. M. (2024). Nanopartículas de TiO2 fotocatalíticas incorporadas en materiales de construcción. ¡Construyamos edificios inteligentes!. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 17(32), 1e-39e. https://doi.org/10.22201/ceiich.24485691e.2024.32.69737 (Original work published 9 de marzo de 2023)
Sección
Artículos de revisión
Biografía del autor/a

Luis Felipe Rodríguez-Alfaro, Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil–Departamento de Ecomateriales y Energía.

 

 

Citas

Abebe, B. Murthy, H. C. A. y Zereffa, E. (2018). Summary on adsorption and photo-catalysis for pollutant remediation: mini review. Journal of Encapsulation and Adsorption Sciences, 08: 225-255. https://doi.org/10.4236/jeas.2018.84012.

Agboola, O. y Benson, N. (2021). Physisorption and chemisorption mechanisms influencing micro (nano) plastics-organic chemical contaminants interactions: a review. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.678574.

Aguia, C. Angelo, J. Madeira, L. M. y Mendes, A. (2011). Photo-oxidation of NO using an exterior paint - Screening of various commercial titania in powder pressed and paint films. Journal of Environmental Management, 92: 1724-1732. https://doi.org/10.1016/j.jenvman.2011.02.010.

Allen, N. S. Edge, M. Verran, J. Caballeron, L. Abrusci, C. Stratton, J. Maltby, J. y Bygott, C. (2009). Photocatalytic surfaces: environmental benefits of nanotitania. The Open Materials Science Journal, 3, 6-27.

Almazán-Cruzado, D. (2020). Libro blanco de la fotocatálisis, vol. 1. España: Asociación Ibérica de la Fotocatálisis.

Ângelo, J. Andrade, L. y Mendes, A. (2014). Highly active photocatalytic paint for NOx abatement under real-outdoor conditions. Applied Catalysis A: General, 484: 17-25. https://doi.org/10.1016/j.apcata.2014.07.005.

Angulo-Ibáñez, A. Goitandia, A. M. Albo, J. Aranzabe, E. Beobide, G. Castillo, O. y Peréz-Yáñez, S. (2021). Porous TiO2 thin film-based photocatalytic windows for an enhanced operation of optofluidic microreactors in CO2 conversion. iScience, 24: 1-15. https://doi.org/10.1016/j.isci.2021.102654.

Ayyub, M. M. y Rao, C. N. R. (2020). Design of efficient photocatalysts through band gap engineering. Nanostructured Photocatalysts, 1-18. https://doi.org/10.1016/b978-0-12-817836-2.00001-6.

Bajorowicz, B. Kobylański, M. P. Malankowska, A. Mazierski, P. Nadolna, J. Pieczyńska, A. y Zaleska-Medynska, A. (2018). Application of metal oxide-based photocatalysis. Metal Oxide-Based Photocatalysis, 211-340. https://doi.org/10.1016/b978-0-12-811634-0.00004-4.

Ballari, M. M. y Brouwers, H. J. H. (2013). Full scale demonstration of air-purifying pavement. Journal of Hazardous Materials, 254-255: 406-414. https://doi.org/10.1016/j.jhazmat.2013.02.012.

Baltes, L. Patachia, S. Tierean, M. Ekincioglu, O. y Ozkul, H. M. (2018). Photoactive glazed polymercement composite. Appl. Surf. Sci, 438: 84-95. https://doi.org/10.1016/j.apsusc.2017.09.068.

Batsungnoen, K. Riediker, M. Suarez, G. y Hopf, N. B. (2020). From nano to micrometer size particles - A characterization of airborne cement particles during construction activities. J Hazard Mater, 398: 122838. https://doi.org/10.1016/j.jhazmat.2020.122838.

Beeldens, A. Cassar, L. y Murata, Y. (2011). Applications of TiO2 photocatalysis for air purification. Applications of Titanium Dioxide Photocatalysis to Construction Materials, 23-35. https://doi.org/10.1007/978-94-007-1297-3_5.

Boonen, E. Beeldens, A. Dirkx, I. y Bams, V. (2017). Durability of cementitious pho-tocatalytic building materials. Catal. Today, 287: 196-202. Brand, C. (2018). The health costs of air pollution from cars and vans. University of Oxford, UK Energy Research Centre, 1-21. https://doi.org/10.1016/j.jclepro.2012.10.049.

Castellote, M. y Bengtsson, N. (2011). Principles of TiO2 photocatalysis. Applications of Titanium Dioxide Photocatalysis to Construction Materials, 5-10. https://doi.org/10.1007/978-94-007-1297-3_2.

Chen, F. Yang, X. Mak, H. K. C. y Chan, D. W. T. (2010). Photocatalytic oxidation for antimicrobial control in built environment: A brief literature overview. Building and Environment, 45(8): 1747-1754. https://doi.org/10.1016/j.buildenv.2010.01.024.

Chen, J. Kou, S.-C. y Poon, C.-S. (2011). Photocatalytic cement-based materials: comparison of nitrogen oxides and toluene removal potentials and evaluation of self-cleaning performance. Building and Environment, 46(9): 1827-1833. https://doi.org/10.1016/j.buildenv.2011.03.004.

Chen, J. y Poon, C. S. (2009). Photocatalytic construction and building materials: from fundamentals to applications. Building and Environment, 44(9): 1899-1906. https://doi.org/10.1016/j.buildenv.2009.01.002.

Chen, M. y Liu, Y. (2010). NOx removal from vehicle emissions by functionality surface of asphalt road. J. Hazard. Mater, 174(1-3): 375-379. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.09.062.

Claire, E. Bygott, E. Maltby, J. y Stratton, J. (2007). Symposium on photocatalysis, environment and construction materials. RILEM Publications SARL, 1: 251-258.

Comission, E. I. (2015). A clear choice for the UK: Technology options for tackling air pollution. Tecnical Report, EIC.

Cordero, J. M. Hingorani, R. Jimenez-Relinque, E. Grande, M. Borge, R. Narros, A. y Castellote, M. (2020). NOx removal efficiency of urban photocatalytic pavements at pilot scale. Sci Total Environ, 719: 137459. https://doi.org/10.1016/j.scitotenv.2020.137459.

Cros, C. J. (2013). The use of selective materials to reduce human exposure to ozone and oxides of nitrogen. Tesis de grado. The University of Texas at Austin.

Daniyal, M. Akhtar, S. y Azam, A. (2019). Effect of nano-TiO2 on the properties of cementitious composites under different exposure environments. Journal of Materials Research and Technology, 8(6): 6158-6172. https://doi.org/10.1016/j.jmrt.2019.10.010.

De Melo, J. V. S. Triches, G. Gleize, P. J. P. y Villena, J. (2012). Development and evaluation of the efficiency of photocatalytic pavement blocks in the laboratory and after one year in the field. Construct. Build. Mater, 37, 310-319.

Dell’Edera, M. Lo Porto, C. De Pasquale, I. Petronella, F. Curri, M. L. Agostiano, A. y Comparelli, R. (2021). Photocatalytic TiO2-based coatings for environmental applications. Catalysis Today, 380: 62-83. https://doi.org/10.1016/j.cattod.2021.04.023.

Di Paola, A. Garcia-Lopez, E. Marci, G. y Palmisano, L. (2012). A survey of photo-catalytic materials for environmental remediation. J Hazard Mater, 211-212: 3-29. https://doi.org/10.1016/j.jhazmat.2011.11.050.

Diamanti, M. V. Paolini, R. Rossini, M. Aslan, A. B. Zinzi, M. Poli, T. y Pedeferri, M. P. (2015). Long term self-cleaning and photocatalytic performance of anatase added mortars exposed to the urban environment. Construction and Building Materials, 96: 270-278. https://doi.org/10.1016/j.conbuildmat.2015.08.028.

EDSA, B. P. (2013). BoysenKnoxoutProject. HugeDomains.com. http://boysenknoxout-project.com/.

Ershad-Langroudi, A. Fadaei, H. y Ahmadi, K. (2019). Application of polymer coat-ings and nanoparticles in consolidation and hydrophobic treatment of stone monuments. Iran Polym Journal, 28: 1-19. https://doi.org/10.1007/s13726-018-0673-y.

Fan, W. Chan, K. Y. Zhang, C. M. y Leung, M. K. (2017). Advanced solar photocatalytic asphalt for removal of vehicular NOx. Energy Proc., 143: 811-816. https://doi.org/10.1016/j.egypro.2017.12.767.

Feng, S. Song, J. Liu, F. Fu, X. Guo, H. Zhu, J. Zeng, Q. Peng, X. Wang, X. Ouyang, Y. y Li, F. (2020). Photocatalytic properties, mechanical strength and durability of TiO2/cement composites prepared by a spraying method for removal of organic pollutants. Chemosphere, 254: 126813. https://doi.org/10.1016/j.che-mosphere.2020.126813.

Fermoso, J. Sánchez, B. y Suarez, S. (2020). Air purification applications using pho-tocatalysis. Nanostructured Photocatalysts, 99-128. https://doi.org/10.1016/b978-0-12-817836-2.00005-3.

Folli, A. (2015). Field study of air purifying paving elements containing TiO2. Atmos. Environ. Monit. Assess, 107(2): 44-51. https://doi.org/10.1016/j.atmosenv.2015.02.025.

Folli, A. Pochard, I. Nonat, A. Jakobsen, U. H. Shepherd, A. M. y Macphee, D. E. (2010). Engineering photocatalytic cements: understanding TiO2 surface chemistry to control and modulate photocatalytic performances. Journal of the American Ceramic Society, 93(10): 3360-3369. https://doi.org/10.1111/j.1551-2916.2010.03838.x.

Foster, H. A. Ditta, I. B. Varghese, S. y Steele, A. (2011). Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol, 90(6): 1847-1868. https://doi.org/10.1007/s00253-011-3213-7.

Ganesh, V. A. Raut, H. K. Nair, A. S. y Ramakrishna, S. (2011). A review on self-cleaning coatings. Journal of Materials Chemistry, 21(41). https://doi.org/10.1039/c1jm12523k.

Ganguly, P. Byrne, C. Breen, A. y Pillai, S. C. (2018). Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances. Applied Catalysis B: Environmental, 225: 51-75. https://doi.org/10.1016/j.apcatb.2017.11.018.

Gołąbiewska, A. Kobylański, M. P. y Zaleska-Medynska, A. (2018). Fundamentals of metal oxide-based photocatalysis. Metal Oxide-Based Photocatalysis: 3-50. https://doi.org/10.1016/b978-0-12-811634-0.00002-0.

González-Barriga, G. A. (2018). Fotocatálisis aplicada a los materiales de la construcción. Chile: Universidad Mayor.

Gopalan, A. I. Lee, J. C. Saianand, G. Lee, K. P. Sonar, P. Dharmarajan, R. Hou, Y. L. Ann, K. Y. Kannan, V. y Kim, W. J. (2020). Recent progress in the abatement of hazardous pollutants using photocatalytic TiO2-based building materials. Nanomaterials (Basel), 10(9). https://doi.org/10.3390/nano10091854.

Grabowska, E. Marchelek, M. Paszkiewicz-Gawron, M. y Zaleska-Medynska, A. (2018). Metal oxide photocatalysts. Metal Oxide-Based Photocatalysis, 51-209. https://doi.org/10.1016/b978-0-12-811634-0.00003-2.

Guerrini, G. L. (2012). Photocatalytic performances in a city tunnel in Rome. J. Construction and Building Materials, 27: 165-175. https://doi.org/10.1016/j.con-buildmat.2011.07.065.

Guo, M. Z. Ling, T. C. y Poon, C. S. (2013). Nano-TiO2-based architectural mortar for NO removal and bacteria inactivation: Influence of coating and weathering con-ditions. Cement and Concrete Composites, 36: 101-108. https://doi.org/10.1016/j.cemconcomp.2012.08.006.

Guo, M. Z. Ling, T. C. y Poon, C. S. (2017). Photocatalytic NO x degradation of concrete surface layers intermixed and spray-coated with nano-TiO2: influence of experimental factors. Cem. Concr. Compos., 83: 279-289. https://doi.org/10.1016/j.cemconcomp.2017.07.022.

Guo, M. Z. Maury-Ramirez, A. y Poon, C. S. (2015). Photocatalytic activities of tita-nium dioxide incorporated architectural mortars: effects of weathering and activation light. Build. Environ., 94: 395-402. https://doi.org/10.1016/J.BUILD-ENV.2015.08.027.

Guo, M. Z. Maury-Ramirez, A. y Poon, C. S. (2016). Self-cleaning ability of titanium di-oxide clear paint coated architectural mortar and its potential in field application. J. Clean. Prod., 112: 3583-3588. https://doi.org/10.1016/j.jclepro.2015.10.079.

Hamidi, F. y Aslani, F. (2019). TiO2-based photocatalytic cementitious composites: materials, properties, influential parameters, and assessment techniques. Nanomaterials (Basel), 9(10). https://doi.org/10.3390/nano9101444.

Han, B. Zhang, L. y Ou, J. (2017a). Photocatalytic concrete. Smart and Multifunc-tional Concrete Toward Sustainable Infrastructures, 299-311. https://doi.org/10.1007/978-981-10-4349-9_17.

Han, B. Zhang, L. y Ou, J. (2017b). Smart and multifunctional concret (photocatalytic concrete). https://doi.org/10.1007/978-981-10-4349-9.

Hanaor, D. y C. Sorrell. (2011). Review of the anatase to rutile phase transformation. Journal of Materials science, 46(4): 855-874. https://doi.org/10.1007/s10853-010-5113-0.

Hashimoto, K. Hiroshi, I. y A. F. (2005). TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics Part 1 Regular Papers Short Notes and Review Papers, 44(12): 8269. https://doi.org/ 10.1143/JJAP.44.8269.

Hassan, M. M. Dylla, H. Mohammad, L. N. y Rupnow, T. (2010). Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. Constr. Build. Mater.,24(8): 1456-1461. https://doi.org/10.1016/j.conbuildmat.2010.01.009.

Hay, S. O. Obee, T. Luo, Z. Jiang, T. Meng, Y. He, J. Murphy, S. C. y Suib, S. (2015). The viability of photocatalysis for air purification. Molecules, 20(1): 1319-1356. https://doi.org/10.3390/molecules20011319.

Hoffmann, M. R. Martin, S. T. Choi, W. y Bahnemann, D. W. (1995). Environmental applicactions of semiconductor photocatalysis. Chemical Reviews, 95: 69-96. https://doi.org/10.1021/cr00033a004.

Italcementi, T. X. (2009). The active photocatalytic principle. Scientific results: labora-tory test. Reporte técnico, 1. Italcementi Group. Bergamo, Italia. https://p2in-fohouse.org/ref/41/40516.pdf.

Janus, M. Madraszewski, S. Zajac, K. y Kusiak-Nejman, E. (2020). A new preparation method of cement with photocatalytic activity. Materials (Basel), 13(23). https://doi.org/10.3390/ma13235540.

Janus, M. Madraszewski, S. Zajac, K. Kusiak-Nejman, E. Morawski, A. W. y Stephan, D. (2019). Photocatalytic activity and mechanical properties of cements modified with TiO2/N. Materials (Basel), 12(22). https://doi.org/10.3390/ma12223756.

Janus, M. y Zajac, K. (2016). Concretes with photocatalytic activity. High Perfor-mance Concrete Technology and Applications. https://doi.org/10.5772/64779.

Ji, Y. Mattsson, A. Niklasson, G. A. Granqvist, C. G. y Österlung, L. (2019). Synergis-tic TiO2/VO2 window coating with thermochromism, enhanced luminous transmittance, and photocatalytic activity. Joule, 3(10): 2457-2471.

Jimenez-Relinque, E. Rodriguez-Garcia, J. y Castillo, A. C. M. (2015). Characteristics and efficiency of photocatalytic cementitious materials: type of binder, rough-ness and microstructure. Cement and Concrete Research, 71: 124-131. https://doi.org/10.1016/j.cemconres.2015.02.003.

Khanna, S. Paneliya, S. Hinshu, H. Singh, A. P. Bhatt, N. Barik, B. Mishra, R. y Motiani, R. (2020). Incorporation of anatase-TiO2 in cement to enhance the self-cleaning and mechanical properties: a systematic study. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.10.625.

Khannyra, S. Gil, M. L. A. Addou, M. y Mosquera, M. J. (2022). Dye decomposition and air de-pollution performance of TiO2/SiO2 and N-TiO2/SiO2 photocatalysts coated on Portland cement mortar substates. Environmental Science and Pollution Research, 29(42): 63112-63125. https://doi.org/10.1007/s11356-022-20228-8.

Khin, M. M. Nair, A. S. Babu, V. J. Murugan, R. y Ramakrishna, S. (2012). A review on nanomaterials for environmental remediation. Energy & Environmental Sci-ence, 5(8). https://doi.org/10.1039/c2ee21818f.

Khitab, A. Alam, M. Riaz, H. y Rauf, S. (2014). Smart concretes: review. International Journal of Advances in Life Science and Technology, 1(2): 47-53. https://doi.org/10.18488/journal.72/2014.1.2/72.2.47.53.

Loh, K. Gaylarde, C. C. y Shirakawa, M. A. (2018). Photocatalytic activity of ZnO and TiO2 ‘nanoparticles’ for use in cement mixes. Construction and Building Materials, 167: 853-859. https://doi.org/10.1016/j.conbuildmat.2018.02.103.

Luévano-Hipólito, E. y Martínez-de la Cruz, A. (2018). Photocatalytic stucco for NO removal under artificial and by real weatherism. Construction and Building Materials, 174: 302-309. https://doi.org/10.1016/j.conbuildmat.2018.04.095.

Maggos, T. Bartzis, J. G. Liakou, M. y Gobin, C. (2007). Photocatalytic degradation of NOx gases using TiO2-containing paint: a real scale study. J Hazard Mater, 146(3): 668-673. https://doi.org/10.1016/j.jhazmat.2007.04.079.

Maggos, T. Plassais, J. G. Bartzis, J. G. Vasilakos, C. Moussiopoulos, N. y Bonafous, L. (2008). Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environ. Monit. Assess. 136: 35-44. https://doi.org/10.1007/s10661-007-9722-2.

Mamaghani, A. H. Haghighat, F. y Lee, C.-S. (2020). Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification. Applied Catalysis B: Environmental, 269. https://doi.org/10.1016/j.apcatb.2020.118735.

McIntyre, H. M. y Hart, M. L. (2021). Immobilization of TiO2 nanoparticles in ce-ment for improved photocatalytic reactivity and treatment of organic pollutants. Catalysts, 11(8). https://doi.org/10.3390/catal11080938. Moreno-Huerga, I. (2018).

Fotocatálisis en materiales en base de cemento evaluación de autolimpieza de fotocatalíticos en el espectro visible frente al UV. Madrid: Universidad Politécnica de Madrid.

Nakata, K. y Fujishima, A. (2012). TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3): 169-189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001.

Nevárez-Martínez, M. C. Espinoza-Montero, P. J. Quiroz-Chávez, F. J. y Ohtani, B. (2017). Fotocatálisis: inicio, actualidad y perspectivas a través del TiO2. Avances en Química, 12(2-3), 1-22. Venezuela: Universidad de los Andes.

Nguyen, V.-H. Nguyen, B.-S. Huang, C.-W. Le, T.-T. Nguyen, C. C. Nhi Le, T. T. Heo, D. Ly, Q. V. Trinh, Q. T. Shokouhimehr, M. Xia, C. Lam, S. S. Vo, D.-V. N. Kim, S. Y. y Le, Q. V. (2020). Photocatalytic NOx abatement: recent advances and emerging trends in the development of photocatalysts. Journal of Cleaner Production, 270. https://doi.org/10.1016/j.jclepro.2020.121912.

Norhasri, M. S. M. Hamidah, M. S. y Fadzil, A. M. (2017). Applications of using nano material in concrete: A review. Construction and Building Materials, 133: 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005.

Papadaki, D. Kiriakidis, G. y Tsoutsos, T. (2018). Applications of nanotechnology in construction industry. Fundamentals of Nanoparticles, 343-370. https://doi.org/10.1016/b978-0-323-51255-8.00011-2.

Pelaez, M. Nolan, N. T. Pillai, S. C. Seery, M. K. Falaras, P. Kontos, A. G. Dunlop, P. S. M. Hamilton, J. W. J. Byrne, J. A. O’Shea, K. Entezari, M. H. y Dionysiou, D. D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125: 331-349. https://doi.org/10.1016/j.apcatb.2012.05.036.

Pérez-Nicolás, M. Navarro-Blasco, I. Fernández, J. M. y Alvarez, J. I. (2017). Atmospheric NOx removal: study of cement mortars with iron-and vanadium-doped TiO2 as visible light–sensitive photocatalysts. Constr. Build. Mater., 149: 257-271. http://dx.doi.org/10.1016/j.conbuildmat.2017.05.132.

Pietrzak, A. Adamus, J. y Langier, B. (2016). Application of titanium dioxide in cement and concrete technology. Key Engineering Materials, 687: 243-249. https://doi.org/10.4028/www.scientific.net/KEM.687.243.

Pulvirenti, B. Baldazzi, S. Barbano, F. Brattich, E. y Di Sabatino, S. (2020). Numerical simulation of air pollution mitigation by means of photocatalytic coatings in real-world street canyons. Building and Environment, 186. https://doi.org/10.1016/j.buildenv.2020.107348.

Qiu, L. Dong, S. Ashour, A. y Han, B. (2020). Antimicrobial concrete for smart and durable infrastructures: a review. Construction and Building Materials, 260(120456): 1-13. https://doi.org/10.1016/j.conbuildmat.2020.120456.

Rafique, M. S. Tahir, M. B. Rafique, M. y Shakil, M. (2020). Photocatalytic nanoma-terials for air purification and self-cleaning. Nanotechnology and Photocatalysis for Environmental Applications, 203-219. https://doi.org/10.1016/b978-0-12-821192-2.00012-7.

Rashed, M. N. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater. Organic Pollutants-Monitoring, Risk and Treatment, 167-194. https://doi.org/10.5772/54048.

Rodriguez-Gonzalez, V. Obregon, S. Patron-Soberano, O. A. Terashima, C. y Fujishi-ma, A. (2020). An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes. Appl Catal B, 270, 118853. https://doi.org/10.1016/j.apcatb.2020.118853.

Russell, H. S. Frederickson, L. B. Hertel, O. Ellermann, T. y Jensen, S. S. (2021). A review of photocatalytic materials for urban NOx remediation. Catalysts, 11(6). https://doi.org/10.3390/catal11060675.

Sagir, M. Tahir, M. B. Rafique, M. Rafique, M. S. y Nawaz, T. (2020). Photocatalytic nanomaterials for CO2 photoreduction and disinfection of bacteria. Nanotech-nology and Photocatalysis for Environmental Applications, 159-189. https://doi.org/10.1016/b978-0-12-821192-2.00010-3.

Salthammer, T. y Fuhrmann, F. (2007). Photocatalytic surface reactions on indoor wall paint. Environ. Sci. Technol., 41: 6573-6578. https://doi.org/10.1021/es070057m.

Salvadores, F. Reli, M. Alfano, O. M. Koci, K. y Ballari, M. L. M. (2020). Efficiencies evaluation of photocatalytic paints under indoor and outdoor air conditions. Front Chem, 8: 551710. https://doi.org/10.3389/fchem.2020.551710.

Sansotera, M. Geran, S. Baggioli, A. Bianchi, C. Pedeferri, M. P. Diamanti, M. V. y Navarrini, W. (2018). Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO2 nanopowders for air purification. Chemical Engineering Journal, 361. https://doi.org/10.1016/j.cej.2018.12.136.

Schilling, K. Bradfor, B. Castelli, D. Dufour, E. Nash, J. F. Pape, W. Schulte, S. Tooley, I. van den Bosch, J. y Schellauf, F. (2010). Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci., 4: 495-509. https://doi.org/10.1039/b9pp00180h.

Segundo, I. R. Ferreira, C. Freitas, E. F. Carneiro, J. O. Fernandes, F. Junior, S. L. y Costa, M. F. (2018). Assessment of photocatalytic, superhydrophobic and self-cleaning properties on hot mix asphalts coated with TiO2 and/or ZnO aqueous solutions. Constr. Build. Mater., 166: 500-509. https://doi.org/10.1016/j.conbuildmat.2018.01.106.

Shu, X. Huang, B. y Liu, J. (2013). Special issue on materials innovations for sustainable infrastructure. Journal of Materials in Civil Engineering, 25(7): 825-828. https://doi.org/10.1061/(asce)mt.1943-5533.0000840.

Singh, L. P. Dhaka, R. K. Ali, D. Tyagi, I. Sharma, U. y Banavath, S. N. (2021). Remediation of noxious pollutants using nanotitania-based photocatalytic construction materials: a review. Environ Sci Pollut Res Int, 28(26): 34087-34107. https://doi.org/10.1007/s11356-021-14189-7.

Soledad-Faraldos, M. (2012). Guía práctica de la fotocatálisis aplicada a infraestructuras urbanas. España: Asociación Ibérica de Fotocatálisis, CONAMA.

Tahir, M. B. Iqbal, T. Rafique, M. Rafique, M. S. Nawaz, T. y Sagir, M. (2020). Nanoma-terials for photocatalysis. Nanotechnology and Photocatalysis for Environmental Applications, 65-76. https://doi.org/10.1016/b978-0-12-821192-2.00005-x.

Tong, H. Ouyang, S. Bi, Y. Umezawa, N. Oshikiri, M. y Ye, J. (2012). Nano-photocatalytic materials: possibilities and challenges. Adv. Mater., 24(2): 229-251. https://doi.org/10.1002/adma.201102752.

Topçu, I. B. Akkan, E. Uygunoğlu, T. y Çalişkan, K. (2020). Self-cleaning concretes: an overview. J. Cem. Based Compos., 2: 6-12. https://doi.org/10.36937/ceba-com.2020.002.002.

Wang, D. Leng, Z. Hüben, M. Oeser, M. y Steinauer, B. (2016). Photocatalytic pave-ments with epoxy-bonded TiO2-containing spreading material. Constr. Build. Mater., 107, 44-51. https://doi.org/10.1016/j.conbuildmat.2015.12.164.

Wang, L. Zhang, H. y Gao, Y. (2018). Effect of TiO2 nanoparticles on physical and mechanical properties of cement at low temperatures. Advances in Materials Science and Engineering, 2018: 1-12. https://doi.org/10.1155/2018/8934689.

Wang, R. Sakai, N. Fujishima, A. Watanabe, T. y Hashimoto, K. (1999). Studies of surface wettability conversion on TiO2 single-crystal surface. J. Phys. Chem. B., 103(12): 2188-2194. https://doi.org/10.1021/JP983386X.

Wang, Z. Gauvin, F. Feng, P. Brouwers, H. J. H. y Yu, Q. (2020). Self-cleaning and air purification performance of Portland cement paste with low dosages of nano-dispersed TiO2 coatings. Construction and Building Materials, 263. https://doi.org/10.1016/j.conbuildmat.2020.120558.

Wang, Z. Yu, Q. Gauvin, F. Feng, P. Qianping, R. y Brouwers, H. J. H. (2020). Nano-dispersed TiO2 hydrosol modified Portland cement paste: The underlying role of hydration on self-cleaning mechanisms. Cement and Concrete Research, 136. https://doi.org/10.1016/j.cemconres.2020.106156.

Witkowski, H. Jackiewicz-Rek, W. Chilmon, K. Jarosławski, J. Tryfon-Bojarska, A. y Gąsiński, A. (2019). Air purification performance of photocatalytic concrete paving blocks after seven years of service. Applied Sciences, 9(9). https://doi.org/10.3390/app9091735.

Yamazaki, S. Takaki, D. Nishiyama, N. y Yamazaki, Y. (2020). Factors affecting photo-catalytic activity of TiO2. Current Developments in Photocatalysis and Photocatalytic Materials, 23-38. https://doi.org/10.1016/b978-0-12-819000-5.00003-5.

Yang, L. Hakki, A. Wang, F. y Macphee, D. E. (2018). Photocatalyst efficiencies in concrete technology: the effect of photocatalyst placement. Appl. Catal. B Environ, 222: 200-208. https://doi.org/10.1016/j.apcatb.2017.10.013.

Yousefi, A. Allahverdi, A. y Hejazi, P. (2013). Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes. Constr. Build. Mater, 41, 224-230. https://doi.org/10.1016/j.conbuildmat.2012.11.057.

Yu, Q. L. Hendrix, Y. Lorencik, S. y Brouwers, H. J. H. (2018). Field study of NOx degradation by a mineral-based air purifying paint. Building and Environment, 142: 70-82. https://doi.org/10.1016/j.buildenv.2018.06.014.

Zhou, Y. Luo, B. Li, J. Hao, Y. Yang, W. Shi, F. Chen, Y. Simayi, M. y Xie, S. (2019). Characteristics of six criteria air pollutants before, during, and after a severe air pollution episode caused by biomass burning in the southern Sichuan Basin, China. Atmospheric Environment, 215: 116840. https://doi.org/https://doi.org/10.1016/j.atmosenv.2019.116840.